前言
YOLOv10 是清华大学研究人员在 UltralyticsPython 清华大学的研究人员在 YOLOv10软件包的基础上,引入了一种新的实时目标检测方法,解决了YOLO 以前版本在后处理和模型架构方面的不足。通过消除非最大抑制(NMS)和优化各种模型组件,YOLOv10 在显著降低计算开销的同时实现了最先进的性能。并用大量实验证明,YOLOv10 在多个模型尺度上实现了卓越的精度-延迟权衡。
1.模型获取
官网连接:
https://github.com/THU-MIG/yolov10
也可以文末公众号内回复“YOLOv10”,获取全部代码、论文以及初始权重文件。
2.YOLOv10亮点
-
无 NMS 设计:利用一致的双重分配来消除对 NMS 的需求,从而减少推理延迟。
-
整体模型设计:从效率和准确性的角度全面优化