YOLOv8更换BiFPN并融合P2小目标检测层

BiFPN

BiFPN(Bi-directional Feature Pyramid Network)是一种用于目标检测和语义分割任务的神经网络架构,旨在改善特征金字塔网络(Feature Pyramid Network, FPN)的性能。FPN是一种用于处理多尺度信息的网络结构,通常与骨干网络(如ResNet或EfficientNet)结合使用,以生成不同分辨率的特征金字塔,从而提高对象检测和分割的性能。BiFPN在此基础上进行了改进,以更好地捕获多尺度信息和提高模型性能。

以下是BiFPN的关键特点和工作原理:

双向连接:BiFPN引入了双向连接,允许信息在不同分辨率级别之间双向传播。这有助于更好地融合低级别和高级别特征,并促进了特征的上下文传播,从而提高了对象检测和分割的准确性。

自适应特征调整:BiFPN采用自适应的特征调整机制,可以学习权重,以调整不同层级的特征以更好地匹配不同任务的需求。这有助于改进特征融合的效果。

模块化设计:BiFPN的模块化设计使其易于嵌入到各种深度神经网络架构中,例如单发射点(Single Shot MultiBox Detector, SSD)、YOLO(You Only Look Once)、以及Mask R-CNN等。

高效性:BiFPN被设计为高效的模型,具有较少的参数和计算复杂度,使其适用于嵌入式设备和实际部署。

提高性能:BiFPN的引入通常能够显著提高对象检测和分割任务的性能,特别是对于小目标或复杂场景,其性能改进尤为显著。

总的来说,BiFPN是一种改进的特征金字塔网络结构,通过双向连接、自适应特征调整和模块化设计,提高了对象检测和语义分割任务的性能,使得神经网络能够更好地理解和解释多尺度信息,从而在计算机视觉任务中发挥更大的作用。

01 FPN的演变

目标检测性能提升,一般主要通过数据增强、改进Backbone、改进FPN、改进检测头、改进loss、改进后处理等6个常用手段。

图片

图片

02 v8更换BiFPN并融合P2小目标层

YOLOv8的改进,更换BiFPN(Bi-directional Feature Pyramid Network)并融合P2小目标检测层,具有以下好处:

①提高小目标检测准确性:引入P2小目标检测层使YOLOv8能够更有效地检测小目标物体。小目标通常在图像中占据较少的像素,因此更容易被忽略或误判。通过专门的P2层,YOLOv8能够更敏锐地检测和定位小目标,提高了小目标检测的准确性。

②更好的多尺度信息融合:BiFPN的引入允许信息在不同分辨率级别之间双向传播,从而更好地融合多尺度信息。这有助于模型更全面地理解不同大小的目标,提高了对多尺度物体的检测性能。同时,它还改进了对物体的上下文理解,有助于减少误报或漏报。

图片

只需要修改yaml文件,代码如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect


# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs


# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9


# YOLOv8.0n head
head:
  - [4, 1, Conv, [256]]  # 10
  - [6, 1, Conv, [256]]  # 11
  - [9, 1, Conv, [256]]  # 12


  - [-1, 1,  nn.Upsample, [None, 2, 'nearest']] 
  - [[-1, 11], 1, Concat, [1]] 
  - [-1, 3, C2f, [256]] # 15


  - [-1, 1,  nn.Upsample, [None, 2, 'nearest']] 
  - [[-1, 10], 1, Concat, [1]] 
  - [-1, 3, C2f, [256]] 
  - [-1, 1,  nn.Upsample, [None, 2, 'nearest']] #19


  - [2, 1,  Conv, [256]] 
  - [[-1, 19], 1, Concat, [1]]
  - [-1, 3, C2f, [256]] #22


  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 10, 18], 1, Concat, [1]] 
  - [-1, 3, C2f, [256]] # 25


  - [-1, 1, Conv, [256, 3, 2]] 
  - [[-1, 11, 15], 1, Concat, [1]] 
  - [-1, 3, C2f, [256]] # 28


  - [-1, 1, Conv, [256, 3, 2]] 
  - [[-1, 12], 1, Concat, [1]] 
  - [-1, 3, C2f, [256]] # 31


  - [[22, 25, 28,31], 1, Detect, [nc]]  # Detect(P2, P3, P4, P5)

更多内容请点击YOLOv8更换BiFPN并融合P2小目标检测层

最后:

如果你想要进一步了解更多的相关知识,可以关注下面公众号联系~会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!

5a8015ddde1e41418a38e958eb12ecbd.png

### 实现 BiFPN 融合以提升 YOLOv8目标检测性能 #### 设计思路 为了增强YOLOv8目标检测能力,在模型中引入BiFPN(双向特征金字塔网络)。这种设计不仅能够加强多尺度特征的融合,还能特别针对小目标检测提供更好的支持。具体来说,通过替换原有的颈部结构为BiFPN且加入P2用于进一步改善小物体识别的效果[^1]。 #### 构建方法 构建BiFPN的关键在于实现双向特征融合以及加权机制: - **双向特征融合**:允许来自不同次的感受野信息相互交流,即从高到低传递语义丰富的全局上下文;同时也让底细节导向更高分辨率的空间位置准确性。 - **加权融合机制**:对于每一个参与融合的操作都赋予可学习参数作为权重系数,确保重要性较高的部分得到更多关注的同时也保持了灵活性以便适应各种场景下的需求变化。 这些特性共同作用下使得BiFPN成为一种强大而灵活的工具来处理复杂的视觉任务,尤其是在面对大小不一的对象时表现尤为突出[^2]。 #### 集成步骤概述 以下是将BiFPN融入YOLOv8框架内的主要操作指南: 1. 修改配置文件中的neck模块定义,指定采用BiFPN架构; 2. 编写或调整相应的Python类和函数,用以搭建具体的BiFPN实例化对象及其内部组件间的交互逻辑; 3. 将新创建好的BiFPN组件嵌入至整个YOLOv8流水线之中,保证数据流顺畅无阻地经过各个阶段直至最终输出预测结果; 4. 对修改后的版本进行全面测试验证其有效性,根据实际反馈不断迭代优化直到满足预期指标为止。 ```python from yolov8.models import build_neck class CustomBIFPN(build_neck.Neck): def __init__(self, ...): # 初始化设置 super().__init__() self.bifpn_layers = nn.ModuleList([ BIFPNLayer(...) for _ in range(num_repeats) ]) def forward(self, inputs): outputs = [] for bifpn_layer in self.bifpn_layers: inputs = bifpn_layer(inputs) outputs.append(inputs[-1]) return tuple(outputs) def integrate_bifpn_into_yolov8(): model_config['neck'] = 'CustomBIFPN' ... ``` 上述代码片段展示了如何基于现有库扩展一个新的BiFPN类,将其注册给YOLOv8配置系统。这只是一个简化版的例子,真实情况下可能还需要考虑更多的因素比如硬件资源限制、训练策略的选择等[^3]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MatpyMaster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值