
概率论
文章平均质量分 95
Lemonbr
keep going
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Excel-趋势线简介
文章目录前言趋势线线性趋势线对数趋势线多项式趋势线乘幂趋势线指数趋势线移动平均趋势线前言趋势线用于以图形方式显示数据趋势和帮助分析预测问题。这种分析也称为回归分析。通过使用回归分析,可以扩展趋势线的图表预测未来值的实际数据。趋势线Excel中提供了6种不同类型的趋势线:线性趋势线、对数趋势线、多项式趋势线、乘幂趋势线、指数趋势线、移动平均趋势线线性趋势线线性趋势线是适用于简单线性数据集的最佳拟合直线。如果数据点构成的图案类似于一条直线,则表明数据是线性的。线性趋势线通常表示事物是以原创 2020-11-20 22:39:30 · 20158 阅读 · 0 评论 -
概率论入门:概率分布
【编者按】数据科学家Jonny Brooks-Bartlett撰写的零基础概率论教程的第六篇,深入浅出地讲解概率分布这一概念。在之前的文章中,我介绍了概率论的基本概念和基本公理。数学家会为这些感到兴奋,但在实践中,概率论中比较常用的是概率分布。概率分布用于许多领域,但我们很少看到相应的解释。通常作者会假定读者已经了解概率分布了。本文将尝试解释什么是概率分布。什么是概率分布?回忆一下......翻译 2018-12-09 18:03:37 · 1776 阅读 · 0 评论 -
概率论入门:贝叶斯推断
本文我们将介绍参数估计的另一个方法——贝叶斯推断。我同时将展示如何把这个方法看成最大似然的泛化版本,以及在什么情况下两个方法是等价的。数学定义在数学上,贝叶斯定理定义为:其中,P(A|B)表示已知B事件发生的前提下A事件发生的概率(P(B|A)同理,只是A、B事件的角色互换了),P(A)和P(B)是A事件、B事件发生的边缘概率。例子数学定义经常太抽象,令人生畏,所以让我们使...翻译 2018-12-09 16:31:15 · 6814 阅读 · 5 评论 -
概率论入门:基本公理
这篇文章将介绍概率论的核心法则。如果你对概率论很陌生,我建议首先阅读概率论入门的第一篇,熟悉概率论中的基本定义和记号。概率法则(公理)数学家探索数学的新领域的时候,常常从一组定义可以做什么的规则开始。这有点像刚发明足球的时候定下规则“每对11人,手不能触球,不能越位,等等”。一旦确立了规则,球员和球队经理便可以自由探索,创造新的球技和队伍组合。概率论(以及一般数学)没什么两样。我们将这...翻译 2018-12-09 17:25:16 · 3770 阅读 · 0 评论 -
概率论入门:边缘化
本文将通过解决一个相当简单的最大似然问题,介绍边缘化(marginalisation)的概念。本文涉及的一些基本概率概念可以参考本系列的第一篇文章。什么是边缘化边缘化是一种通过累加一个变量的可能值以判定另一个变量的边缘分布的方法。这听起来有点抽象,让我们看一个例子。假设我们想知道天气是如何影响英国人的幸福感的,也就是P(幸福感|天气)。假定我们具有衡量某人的幸福感所需的定义和设备,...翻译 2018-12-09 17:19:10 · 10328 阅读 · 2 评论 -
概率论入门:基本概念
基本概念定义和符号通常概率至少和一个事件有关。这个事件可以是任何事。最简单的例子包括投骰和从口袋中抓取有颜色的球。在这些例子中,事件的结果是随机的(投骰时无法确定最终的点数),所以表示这些事件的结果的变量称为随机变量(常常缩写为RV)。我们常常想知道一个随机变量取一个特定值的概率。例如,投掷一个均质的6面骰时,点数是3的概率是多少?“均质”一词很重要,因为它告诉我们骰子落地时6个面(1...翻译 2018-12-09 14:46:36 · 2233 阅读 · 0 评论 -
概率论入门:最大似然
什么是参数在机器学习中,我们经常使用模型描述从数据中观测结果的过程。例如,我们可能使用随机森林模型来分类客户是否会退订某项服务(称为客户翻转),也可能使用线性模型来基于广告开销预测利润(这将是线性回归的一个例子)。每个模型都包含各自的参数集合,参数集合最终定义了模型是什么样的。我们可以用y = mx + c来表示线性模型。在这个例子中,x可能表示广告开销,y可能表示产生的利润。m和c是这个...翻译 2018-12-09 15:33:45 · 3051 阅读 · 0 评论