NLP之Sentiment之GPT-2:基于torch框架利用GPT-2模型对自定义语料库进行预训练并使用微调后的模型对情感分类任务进行微调的完整代码实现

NLP之Sentiment之GPT-2:基于框架利用GPT-2模型对自定义语料库进行预训练并使用微调后的模型对情感分类任务进行微调

目录

基于框架利用GPT-2模型对自定义语料库进行预训练并使用微调后的模型对情感分类任务进行微调

1、准备数据集

下载该数据集

2、预处理数据集

自定义语料库预处理

定义情感分类任务数据集

2、预训练

为预训练GPT2模型设置一些特殊的Token

设置训练数据集,将每个样本限制在max_length以下

定义GPT-2模型

对GPT-2模型进行预训练

# 预训练模型

训练和评估

3、微调

4、在测试集上评估模型的性能

在自定义语料库上预训练GPT-2并对其进行微调以进行情感分类的部分代码01

在自定义语料库上预训练GPT-2并对其进行微调以进行情感分类的部分代码02


基于框架利用GPT-2模型对自定义语料库进行预训练并使用微调后的模型对情感分类任务进行微调

基于Hugging Face的Transformers库实现对自定义数据集进行预训练与微调的教程

1、准备数据集

首先我们需要准备一个自定义的语料库。这里我们以IMDB情感分类数据集为例,该数据集包含了50000个电影评论,每个评论标记

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值