在wsl2(Ubuntu20.04)中安装cudnn

本文详细介绍了如何在Ubuntu系统上为CUDA 11.4安装对应版本的cuDNN,包括选择合适的cuDNN版本、下载安装包、解压文件、配置文件以及验证安装是否成功等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

可以看cudnn的官方安装文档:

安装指南 * NVIDIA 深度学习 cuDNN 文档

1、根据之前安装的cuda版本来下载安装对应的cudnn版本

cuDNN Archive | NVIDIA Developer

2、比如我的cuda11.4,而且还是在Ubuntu里面安装,所以

3、选完后点击,下载安装包(3个都要下载) 

 

4、把压缩包复制到Ubuntu系统里面去(在Ubuntu中先进入到Windows系统的文件夹下面去,再用sudo命令复制文件到/usr/local/下,最后用sudo命令解压文件)

cd /mnt/d/CUDNN_linux_8.2.4/
sudo cp cudnn-11.4-linux-x64-v8.2.4.15.tgz /usr/local/
sudo tar -xvf cudnn-11.4-linux-x64-v8.2.4.15.tgz

5、最后进行文件配置

sudo cp /usr/local/cuda/include/cudnn*.h /usr/local/cuda/include 
sudo cp -P /usr/local/cuda/lib64/libcudnn* /usr/local/cuda/lib64 
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

6、把另外两个文件也复制到/usr/local/下

cd /mnt/d/CUDNN_linux_8.2.4/
sudo cp libcudnn8_8.2.4.15-1+cuda11.4_amd64.deb /usr/local/
sudo cp libcudnn8-dev_8.2.4.15-1+cuda11.4_amd64.deb /usr/local/

7、 安装

cd /usr/local
sudo dpkg -i libcudnn8_8.2.4.15-1+cuda11.4_amd64.deb
sudo dpkg -i libcudnn8-dev_8.2.4.15-1+cuda11.4_amd64.deb

8、检查是否安装成功

cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

如果出现下列版本号,说明安装成功! 

### 安装和配置 cuDNN 的过程 #### 准备工作 在 WSL (Windows Subsystem for Linux) 中运行的 Ubuntu 20.04安装 cuDNN 需要先确认已正确安装 CUDA 工具包,并确保其版本与目标 cuDNN 版本兼容[^1]。 #### 下载 cuDNN 文件 访问 NVIDIA 开发者网站中的 cuDNN 存档页面,选择适合当前所使用的 CUDA 版本对应的 cuDNN 版本。例如,如果已经安装CUDA 11.4,则应下载与其匹配的 cuDNN 版本(如 cuDNN v8.2.4 对应于 CUDA 11.4)。将选定的 cuDNN 压缩包下载至本地 Windows 系统中[^2]。 #### 将 cuDNN 复制到 Ubuntu 并解压 通过以下步骤完成文件传输及初始化设置: 1. **切换到 Windows 文件目录** 打开终端并输入命令进入存储有 cuDNN 压缩包的位置。假设该位置位于 D:\CUDNN_linux_8.2.4\ 路径下: ```bash cd /mnt/d/CUDNN_linux_8.2.4/ ``` 2. **复制压缩包到指定路径** 使用 `cp` 命令将 cuDNN 压缩包移动到 `/usr/local/` 目录下: ```bash sudo cp cudnn-11.4-linux-x64-v8.2.4.15.tgz /usr/local/ ``` 3. **解压压缩包** 切换到 `/usr/local/` 目录并对刚才复制过来的 `.tgz` 文件执行解压操作: ```bash cd /usr/local/ sudo tar -xvf cudnn-11.4-linux-x64-v8.2.4.15.tgz ``` #### 移动库文件到适当位置 为了使系统能够识别新加入的 cuDNN 库,需将其内容移至特定的目标文件夹内: ```bash sudo cp cuda/include/cudnn*.h /usr/local/cuda/include sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64 ``` 上述指令会把头文件以及动态链接库放置进正确的 CUDA 安装区域里[^3]。 #### 更新共享库缓存 最后一步是更新系统的共享库缓存以便立即生效这些改动: ```bash sudo ldconfig ``` 至此,在 WSL 运行的 Ubuntu 20.04 系统上成功完成了 cuDNN安装与基础配置流程。 ### 测试验证 可以通过编写简单的 Python 或 C++ 程序来测试 GPU 加速功能是否正常运作。比如利用 TensorFlow 或 PyTorch 来加载模型并在训练过程中观察是否有调用到 GPU 设备资源。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值