0-1背包问题:
有 n 件物品和一个最大承重为 W 的背包,每件物品的重量是 i、价值是 i
在保证总重量不超过 W 的前提下,将哪几件物品装入背包,可以使得背包的总价值最大?
注意:每个物品只有 1 件,也就是每个物品只能选择 0 件或者 1 件,因此这类问题也被称为 0-1背包问题
使用动态规划求解:
- 定义状态方程:dp(i,j)表示最大载重为j的情况下,前i件物品的最大总价值,i ∈ [0, n],j ∈ [0, W]
- 定义初始状态:dp(i,0)和dp(0,j)分别表示载重为0,物品为0,此时最大总价值也为0.
- 状态转移方程:确定dp(i,j)和dp(i-1,j-1)的关系。如果只剩最后一件物品,有两种情况
- 最后一件物品重量大于容量,最大物品的价值就是上件物品的称重量:j<wight(i-1)=>dp(i,j)=dp(i-1,j)
- 最后一件物品小于容量,最后一件物品可以选择装入或者不装入,最大价值为前n-1物品的价值和装入当前物品后的价值取 最大值j>=weight(i-1)=>max{value(i-1)+dp(i-1,j-weight(i-1)),dp(i-1,j)}
代码实现:
package com.qc.dp.coins;
/**背包问题
* 有 n 件物品和一个最大承重为 W 的背包,每件物品的重量是 i、价值是 i
* 在保证总重量不超过 W 的前提下,将哪几件物品装入背包,可以使得背包的总价值最大?
* 注意:每个物品只有 1 件,也就是每个物品只能选择 0 件或者 1 件,因此这类问题也被称为 0-1背包问题
* @date 2020/12/4 14:02
* @desc
*/
public class Package {
public static void main(String[] args) {
int[] values = {6, 3, 5, 4, 6};
int[] weights = {2, 2, 6, 5, 4};
int capacity = 10;
System.out.println(pack(values,weights,capacity));
}java
public static int pack(int[] value,int[] weight,int capacity){
//过滤
if(null==value||value.length==0||null==weight||weight.length==0||capacity==0){
return 0;
}
//定义一个二维数组存储状态值 长度加1状态初始化
int[][] dp=new int[value.length+1][capacity+1];
for (int i = 1; i <= value.length; i++) {
for (int j = 1; j <= capacity; j++) {
if(j<weight[i-1]){
dp[i][j]=dp[i-1][j];
}else {
dp[i][j]=Math.max(dp[i-1][j],value[i-1]+dp[i-1][j-weight[i-1]]);
}
}
}
return dp[value.length][capacity];
}
}