动态规划算法(三)解决背包问题

0-1背包问题:

有 n 件物品和一个最大承重为 W 的背包,每件物品的重量是  i、价值是  i
在保证总重量不超过 W 的前提下,将哪几件物品装入背包,可以使得背包的总价值最大?
注意:每个物品只有 1 件,也就是每个物品只能选择 0 件或者 1 件,因此这类问题也被称为 0-1背包问题

使用动态规划求解:

  • 定义状态方程:dp(i,j)表示最大载重为j的情况下,前i件物品的最大总价值,i ∈ [0, n],j ∈ [0, W]
  • 定义初始状态:dp(i,0)和dp(0,j)分别表示载重为0,物品为0,此时最大总价值也为0.
  • 状态转移方程:确定dp(i,j)和dp(i-1,j-1)的关系。如果只剩最后一件物品,有两种情况
    • 最后一件物品重量大于容量,最大物品的价值就是上件物品的称重量:j<wight(i-1)=>dp(i,j)=dp(i-1,j)
    • 最后一件物品小于容量,最后一件物品可以选择装入或者不装入,最大价值为前n-1物品的价值和装入当前物品后的价值取 最大值j>=weight(i-1)=>max{value(i-1)+dp(i-1,j-weight(i-1)),dp(i-1,j)}

代码实现:

package com.qc.dp.coins;
​
/**背包问题
 * 有 n 件物品和一个最大承重为 W 的背包,每件物品的重量是  i、价值是  i
 * 在保证总重量不超过 W 的前提下,将哪几件物品装入背包,可以使得背包的总价值最大?
 * 注意:每个物品只有 1 件,也就是每个物品只能选择 0 件或者 1 件,因此这类问题也被称为 0-1背包问题
 * @date 2020/12/4 14:02
 * @desc
 */
public class Package {
    public static void main(String[] args) {
        int[] values = {6, 3, 5, 4, 6};
        int[] weights = {2, 2, 6, 5, 4};
        int capacity = 10;
        System.out.println(pack(values,weights,capacity));
    }java
​
    public static int pack(int[] value,int[] weight,int capacity){
        //过滤
        if(null==value||value.length==0||null==weight||weight.length==0||capacity==0){
            return 0;
        }
        //定义一个二维数组存储状态值 长度加1状态初始化
        int[][] dp=new int[value.length+1][capacity+1];
        for (int i = 1; i <= value.length; i++) {
            for (int j = 1; j <= capacity; j++) {
                if(j<weight[i-1]){
                    dp[i][j]=dp[i-1][j];
                }else {
                    dp[i][j]=Math.max(dp[i-1][j],value[i-1]+dp[i-1][j-weight[i-1]]);
                }
            }
        }
        return dp[value.length][capacity];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值