如何快速的在本地部署deepseek

1. 安装Ollama

从官网下载安装包(https://ollama.com/download)直接安装。

可选配置:

对于windows用, 可以通过OLLAMA_MODELS 环境变量来更改模型存储位置。

默认情况下,Ollama 模型会存储在 C 盘用户目录下的 .ollama/models 文件夹,占用 C 盘空间。 将其更改到其他分区可以更好地管理你的存储。

步骤 1:找到系统环境变量的设置入口。

  • 方法 1:开始->设置->关于->高级系统设置->系统属性->环境变量。

  • 方法 2:此电脑->右键->属性->高级系统设置->环境变量。

步骤 2:设置 OLLAMA_MODELS 环境变量 (更改模型存储位置)

  • 在 “环境变量” 窗口的 “系统变量(S)” 区域 (或者 “用户变量(U)” 区域,根据你的需求选择),点击 “新建(W)…” 按钮。
  • 在 “变量名(N)” 输入框中,输入: OLLAMA_MODELS (注意大小写,建议全部大写)。
  • 在 “变量值(V)” 输入框中,输入你想要设置的模型存储路径。 例如,如果你想将模型存储到 E 盘的 ollama\models 文件夹下,你可以在 “变量值(V)” 中输入: E:\ollama\models (请根据你的实际情况修改盘符和文件夹路径)。
  • 点击 “确定” 按钮,关闭 “新建系统变量” (或者 “新建用户变量”) 窗口。
    注意: 如果你不知道如何设置 OLLAMA_MODELS 环境变量,可以参考下面的示例。

image

2. 运行deepseek

运行前可以通过 https://tools.thinkinai.xyz/ 查看当前机器能部署多少参数的模型

比如我当前的机器可以部署一个 deepseek-r1:8b 的模型:

image

在命令行运行如下命令:

# 这里为了方便演示,我先运行一个较小的模型(首次运行会自动下载模型文件)
ollama run deepseek-r1:1.5b

ps:如果你不知到怎么打开windows命令行,可以点击这个 文档 查看

更多的模型你可以在 ollama 官网 上找到,小模型的话建议使用蒸馏过的模型,可以通过 distill 关键字搜索。

image

3. 验证部署

1. 查看模型是否已安装

ollama list

有如下输出,说明安装成功
image

2.调用api验证

# 调用API测试
curl http://localhost:11434/api/generate -d '{
"model": "deepseek-r1:1.5b",
"prompt": "用中文解释AI"
}'

image

到这里模型就已经部署完成,但是命令行太原始了,接下来我们找一个对话界面工具。

4.对话界面工具

下载一个对话UI,点击 地址 前往下载对应的操作系统的安装包

image

打开chatbox 后我们点击左下方设置 , 选择模型提供方为 OLLAMA API , 模型选择我们刚刚下载好的 deepseek-r1:1.5b

image

保存配置后,可以开始愉快的使用了😊

image

### 如何在本地环境部署DeepSeek #### 一、准备工作 为了顺利部署 DeepSeek,在开始之前需确认计算机满足基本硬件条件并已安装必要的软件工具。对于希望利用GPU加速的用户,还需确保NVIDIA驱动及相关CUDA库已经正确配置[^2]。 #### 二、使用宝塔面板简化部署过程 宝塔面板提供了图形化的管理界面,使得Docker容器管理和应用部署变得更加直观简单。按照官方指南完成宝塔面板的安装之后,可以通过该平台轻松设置所需的运行环境: 1. **安装宝塔** 访问官方网站获取最新版本的安装命令,并依照提示操作直至成功启动服务。 2. **集成Docker支持** 在宝塔后台找到插件市场,搜索并安装Docker组件,这一步骤将极大地方便后续镜像拉取与容器创建工作。 3. **启动DeepSeek实例** 提供了两种不同的方式来激活DeepSeek应用程序: - 方法一是直接通过网页端口映射实现快速访问; - 推荐的方法二是借助预构建好的Docker Compose文件自动化整个流程,这种方式更加稳定可靠。 4. **启用GPU优化(如果适用)** 对于拥有兼容显卡设备的情况,可以进一步探索如何结合NVIDIA CUDA技术提升性能表现。具体的实施细节会涉及到修改默认配置参数以及调整资源分配策略等高级话题。 #### 三、采用Ollama简化模型调用 除了上述基于Web的服务形式外,还有更轻量级的选择——即利用名为Ollama的小型CLI工具来进行即时性的预测任务处理。只需一条简单的shell指令就能立即加载指定版本的DeepSeek或其他AI模型,非常适合那些追求效率而不愿花费时间搭建复杂架构的研究人员和技术爱好者们尝试[^3]。 ```bash ollama run deepseek-r1 ``` 以上就是关于怎样在一个标准PC上建立属于自己的DeepSeek实验平台的大致介绍。无论是倾向于GUI还是偏好命令行交互风格的朋友都能从中找到适合自己的解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值