Tensorflow实现线性回归模型

该博客详细介绍了如何使用TensorFlow实现一元线性回归模型,从理论到实践,包括线性回归的基本原理、代价函数、梯度下降算法以及在TensorFlow中的语法应用。并探讨了随机梯度下降和批量梯度下降的优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

共分三部分:1.线性回归理论部分

                      2.代码实现

                      3.课后拓展

 

一.线性回归概念及基本原理

概念:是一种统计方法,来确定两种或两种以上变量间相互依赖的定量关系。

一元线性回归:y = w * x + b

任务:根据训练数据预测一元线性回归模型,并用验证数据验证预测的一元线性回归模型是否正确。

(x,y)

1  3

2  5.1

3  6.99

y = w * x + b;

1.假设一个线性回归模型

h(x) = 3 * x + 5;

2.判断这假设线性回归模型对不对

3 * 1 + 5 = 8      3

代价函数:均方差

((8 - 3)的平方 + (11 - 5.1)的平方 + (14 - 6.99)的平方 )/ 2*3

3.调整这个模型参数

h(x) = 2.8 * x +4;

h(x) = 2.6 * x + 3;

...

...

h(x) = 2.0 * x + 1;

求最优解算法:

梯度下降:

4.得到符合要求的线性回归模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

despacito,

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值