2.2 神经网络简介
学习目标
-
目标
-
知道神经网络的定义
-
了解感知机与神经网络的联系
-
了解神经网络的发展历史
-
-
应用
-
无
-
2.2.1 什么是神经网络
要理解神经网络,先解释一种叫做感知机(perceptron)的人工神经元。感知机由科学家Frank Rosenblatt发明于1950至1960年代,他受到了来自Warren McCulloch 和Walter Pitts的更早工作的启发。
注:我们通常使用其它种类的人工神经元模型,主要使用的是一种叫做sigmoid神经元(sigmoid neuron)的神经元模型。
2.2.1.1 感知机(PLA: Perceptron Learning Algorithm))
2.2.2 playground使用
网址:http://playground.tensorflow.org
那么在这整个分类过程当中,是怎么做到这样的效果那要受益于神经网络的一些特点
2.2.2.1 playground简单两类分类结果
但是这种结构的线性的二分类器,但不能对非线性的数据并不能进行有效的分类。如下面异或问题例子:
-
感知机结构,能够很好去解决与、或等问题,但是并不能很好的解决异或等问题。我们通过一张图来看,有四个样本数据
与问题:每个样本的两个特征同时为1,结果为1
或问题:每个样本的两个特征一个为1,结果为1
如果解决异或:每个样本的两个特征相同为0, 不同为1?
2.2.2.2 单神经元复杂的两类-playground演示
那么怎么解决这种问题呢?其实我们多增加层或者多几个感知机即可解决?也就是下图这样的结构,组成一层的结构?
2.2.3 神经网络发展史
2.2.3 神经网络发展史
-
1、深度学习其实并不是新的事物,深度学习所需要的神经网络技术起源于20世纪50年代,那个时候叫做感知机。当时也通常使用单层感知机,尽管结构简单,但是能够解决相当复杂的问题。
-
2、后来感知机被证明存在严重的问题,因为只能学习线性可分函数,连简单的异或(XOR)等线性不可分问题都无能为力,1969年Marvin Minsky写了一本叫做《Perceptrons》的书,他提出了著名的两个观点:1.单层感知机没用,我们需要多层感知机来解决复杂问题 2.没有有效的训练算法。
-
3、1974年哈佛大学博士毕业生Paul J. Werbos首次提出反向传播算法应用在神经网络的可能,The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting,但并未得到学术界的重视。直到1986年BP算法才真正开始流行起来,主要是因为Rumelhart、Hinton、Williams合著的《Learning representations by back-propagating errors》
-
4、 虽然训练算法有了突破,但是还存在很多问题,比如以当时计算机的计算能力,训练一次神经网络耗时太久,不具备实际使用价值。同时还会存在过拟合以及梯度消失等问题。而90年代中期,由Vapnik等人发明的支持向量机(Support Vector Machines,SVM)算法诞生,它同样解决了线性不可分问题,但是对比神经网络有全方位优势:
-
1、高效,可以快速训练;
-
2、无需调参,没有梯度消失问题;
-
3、高效泛化,全局最优解,不存在过拟合问题,几乎全方位的碾压神经网络。
-
-
5、几乎在这10几年的时间,只有Hinton等几位学者在研究神经网络。直到2006年,提出了"深度置信网络"概念,有一个预训练的过程。使用微调技术作为反向传播和调优手段。减少了网络训练时间,并且提出了一个新的概念叫做"深度学习"
-
6、直到2012年,在ImageNet竞赛中,Hinton教授的团队,使用以卷积神经网络为基础的深度学习方案,他们训练的模型面对15万张测试图像时,预测的头五个类别的错误率只有 15.3%,而排名第二的日本团队,使用的SVM方法构建的模型,相应的错误率则高达 26.2%。从此一战成名!2012年后深度学习就成为主流。
2.2.4 总结
-
神经网络的定义
-
感知机与神经网络的联系
-
神经网络的发展历史