
新算法+案例
文章平均质量分 88
组合算法和创新性算法+案例分享
您好啊数模君
自研数模 AI智能体,粉丝群891191920,带你们少走弯路
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
MOEA/D-DE 算法
MOEA/D-DE 算法,即基于分解的多目标进化算法与差分进化相结合的算法。它将多目标优化问题分解为一系列子问题,通过优化这些子问题来逼近多目标问题的 Pareto 前沿。核心思想:该算法利用权重向量将多目标优化问题转化为多个单目标优化子问题,每个权重向量对应一个子问题。通过差分进化(DE)算子,在种群中进行变异、交叉和选择操作,产生新的解。算法在更新解的过程中,不仅考虑当前子问题,还利用邻域子问题的信息,从而有效提高算法的搜索效率和收敛性。算法优势。原创 2025-04-16 00:24:20 · 931 阅读 · 0 评论 -
改进型蚁群算法:格栅地图路径优化
在格栅地图路径优化领域,传统算法在处理复杂环境时往往效率不高。本改进型蚁群算法通过一系列创新设计,显著提升了路径优化性能,为各类依赖格栅地图导航的应用提供了强大支持。原创 2025-03-30 11:00:55 · 997 阅读 · 0 评论 -
基于聚类与引力斥力优化的选址算法
在众多实际场景中,诸如消防设施选址、基站布局规划以及充电桩站点部署等,都面临着如何利用最少的资源,实现对所有目标对象全面覆盖的难题。为有效解决这类问题,本文提出一种全新的组合算法模型 —— 基于聚类与引力斥力优化的选址算法。原创 2025-03-28 20:54:54 · 1064 阅读 · 0 评论