【推荐系统的离线评估方法】

本文介绍了推荐系统效果的离线评估,重点关注召回率和准确率两个指标。召回率衡量推荐列表中包含用户喜欢物品的比例,准确率则表示推荐列表中实际被用户评分记录的物品占比。此外,还提到了覆盖率作为评估推荐系统发掘长尾物品能力的指标。文章附带了Python代码实现这些评估方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

声明

内容摘自:项亮,《推荐系统实战》。侵删。

推荐效果的离线评估

现阶段有三类评估推荐效果的方法:离线实验、用户调查、在线实验。本文主要是基于离线实验阐述一些具体的方法。

记R(u)为对用户u推荐的N个物品,记T(u)为用户喜爱/点击了的物品,那么做推荐系统的精度为。

召回率:

R e c a l l = ∑ N ∣ R ( u ) ∩ T ( u ) ∣ ∑ N ∣ T ( u ) ∣ Recall= \frac{\sum_{N}|R(u) \cap T(u)|}{\sum_{N}|T(u)|} Recall=NT(u)NR(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值