
知识推理
文章平均质量分 77
外星人喵宁
业精于勤荒于嬉
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
知识图谱评价指标的学习笔记——MAP,MRR
目前研究方向为知识图谱路径推理方向,最近在研读实验部分描写,针对学习了两个重要的评价指标。参考链接:https://www.cnblogs.com/baiting/p/5138757.html一. MAP(Mean Average Precision)1.简洁的例子单个主题的平均准确率是每篇相关文档检索出后的准确率的平均值。主集合的平均准确率(MAP)是每个主题的平均准确率的平均值。MAP 是反映系统在全部相关文档上性能的单值指标。系统检索出来的相关文档越靠前(rank 越高),MAP就可能越高。如原创 2021-10-08 15:42:50 · 5181 阅读 · 0 评论 -
(论文阅读)Minerva: 散步并到达答案:知识图谱路径推理的强化学习方法
一、摘要和引言摘要:无论是自动构建的还是人工构建的知识库(KB)通常都是不完整的——通过综合现有信息,可以从知识库中推断出许多有效的事实。知识库补全的一种流行方法是,通过在连接一对实体的其他路径上组合推理,找到的信息来推断新的关系。考虑到KBs的巨大规模和路径的指数数量,以前的基于路径的模型只考虑了预测给定两个实体的缺失关系的问题,或评估提议的三元组的真实性。此外,这些方法传统上使用固定实体对之间的随机路径,最近也学会了在固定实体对之间选择路径。我们提出了一个新的算法MINERVA,它解决了更困难和实际原创 2021-04-07 21:29:25 · 1023 阅读 · 0 评论 -
(论文阅读)DeepPath:一种知识图推理的强化学习方法
研究了大规模知识图(KGs)中的推理学习问题。更具体地说,我们描述了一种新的用**于学习多跳关系路径的强化学习框架**:我们使用基于知识图嵌入的具有连续状态的基于策略的agent,该agent通过抽样最有希望的关系来扩展其路径,从而在KG向量空间中进行推理。与之前的研究相比,我们的方法包含了一个考虑到准确性、多样性和效率的奖励功能。实验表明,在Freebase和永无休止的语言学习数据集上,我们提出的方法优于基于路径排序的算法和知识图嵌入方法原创 2021-03-30 21:33:51 · 1640 阅读 · 1 评论 -
论文阅读:(TransE)Translating Embeddings for Modeling Multi-relational Data多关系数据转换嵌入建模
目前研究方向为知识图谱补全,知识图谱补全现有五种常用的方法,分别为:基于知识表示的方法、基于路径查找的方法、基于推理规则的方法、基于强化学习的方法以及基于元学习的方法。寒假的任务是通过多阅读该领域经典论文,开拓思路,找到今后课题的研究方向。本节为阅读知识表示的经典算法——TransE原创 2021-01-21 22:04:20 · 1288 阅读 · 0 评论