手上一块GPU都没有,怎么做深度学习?

本文作者分享了在OpenBayes平台进行医疗大模型微调的经历,强调其界面友好、价格亲民、存储空间大、训练稳定和资源丰富的特点,特别是对学生用户非常友好,推荐给有GPU租赁需求的开发者和研究人员。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先声明,我并不是该厂的水军,也是在跑程序的过程中,发现这个平台很好用,遂与大家分享。目前在大厂从事算法研究,与该平台没有利益关系。

最近在做一些医疗大模型的微调,苦恼于手中资源不足,尝试过Google Colab和Kaggle的白嫖,但数据集的上传就是首要面对的大问题。这两家的优势在于连通外网,下包还有数据集很快,缺点在于存储空间不太够。由于这个问题,我反复尝试多次上传数据集到colab和kaggle,均没有办法解决这个问题,所以尝试了一下OpenBayes的云服务器。不得不说,真的是非常香!对于学生党非常友好,我愿称它为中国的colab。从我自己用了这么久比较下来,openbayes.com 平台的算力租赁是真的很好用,如果想要用一些租赁 GPU 的话就不要错过。目前还在开展活动,GPU 的价格平价中的平价。

新用户用我的专用邀请链接,注册 OpenBayes,即可获得 4个小时 RTX 4090+ 5个小时CPU的免费使用时长,支持累积,永久有效:

注册 - OpenBayes


一、界面清晰

首先,工作台界面设计清晰易懂,引导手册和

<think>嗯,用户想为配备四张RTX 4090显卡和Intel服务器CPU的深度学习工作站选择最佳操作系统。我需要先考虑不同操作系统的兼容性、驱动支持、以及深度学习框架的适配情况。 首先,Linux系统通常是深度学习的首选,尤其是Ubuntu,因为它的社区支持和NVIDIA驱动的兼容性很好。CentOS可能适合企业环境,但用户可能更倾向于Ubuntu的易用性。Fedora也是一个选项,但稳定性可能不如Ubuntu LTS版本。 然后要考虑驱动安装,NVIDIA的CUDA工具包对Linux的支持最好,Windows虽然也支持,但可能在多GPU配置和管理上不如Linux灵活。另外,像Docker和Kubernetes这些工具在Linux上运行更高效,这对深度学习的环境隔离和部署很重要。 用户可能还需要使用特定的深度学习框架,比如TensorFlow或PyTorch,这些框架在Linux上通常有更好的优化和支持。此外,多卡并行训练需要NVIDIA的NVLink和驱动程序的支持,Linux系统在这方面配置更成熟。 另外,操作系统的长期支持版本(LTS)会更稳定,适合服务器环境。Ubuntu 22.04 LTS是一个很好的选择,因为它提供了长期的更新和支持,同时有大量的文档和社区资源。 可能还要提到其他选择,比如使用容器化技术或集群管理,但用户的问题集中在操作系统本身,所以应保持重点。需要确保推荐的操作系统能够正确识别多块GPU,并且安装驱动时不会出现冲突,尤其是使用四块显卡的情况。 最后,总结各个选项的优缺点,给出最佳推荐,并可能提到一些配置注意事项,比如驱动版本、CUDA版本匹配等,确保用户能够顺利搭建环境。</think>### 适合4张4090显卡和Intel CPU的深度学习工作站操作系统推荐 #### 1. **Ubuntu Server 22.04 LTS** - **优势**: - 对NVIDIA GPU的支持最完善,驱动安装简单(通过`apt`或官方.run文件)[^4]。 - 长期支持版本(LTS)稳定性高,兼容主流深度学习框架(如TensorFlow、PyTorch)。 - 支持多GPU并行计算(如NVIDIA NVLink和PCIe拓扑优化)。 - **配置建议**: - 安装NVIDIA驱动时需关闭图形界面(如添加`-no-opengl-files`参数)[^4]。 - 使用CUDA Toolkit 12.x和cuDNN 8.x以适配RTX 4090的Ada Lovelace架构[^2]。 #### 2. **CentOS Stream/RHEL 9** - **优势**: - 企业级稳定性,适合长期运行的服务器环境。 - 支持Intel CPU的高级指令集优化(如AVX-512)。 - **注意事项**: - 需手动安装NVIDIA驱动,且社区支持略弱于Ubuntu。 #### 3. **Windows Server 2022(特定场景)** - **优势**: - 图形化界面友好,适合混合开发环境(如同时运行渲染和训练)。 - 支持DirectML框架,可兼容部分非CUDA生态工具。 - **缺点**: - 多GPU调度效率低于Linux,且驱动兼容性可能受限[^1]。 #### 4. **容器化方案(推荐补充)** - 在Ubuntu/CentOS基础上,使用**Docker**或**Singularity**部署隔离的深度学习环境,避免依赖冲突。 --- ### 关键配置步骤(以Ubuntu为例) 1. **禁用Nouveau驱动**: ```bash echo "blacklist nouveau" | sudo tee /etc/modprobe.d/blacklist-nouveau.conf sudo update-initramfs -u ``` 2. **安装NVIDIA驱动**: ```bash sudo apt install nvidia-driver-535 nvidia-dkms-535 ``` 3. **验证多GPU识别**: ```bash nvidia-smi # 应显示4张RTX 4090 ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值