FlinkCDC读取mysql的表写入kafka/doris/iceberg

文章介绍了如何在Maven项目中使用Flink进行数据流处理,涉及从启用bin-log的MySQL数据库通过CDC连接器读取数据,然后将数据同步到Kafka、Doris以及Iceberg。详细列出了所需的依赖、创建表的SQL语句以及数据插入操作。此外,还提到了创建HadoopCatalog以写入Iceberg表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果在maven项目里写sql的话需要引入cdc的依赖

<dependency>
            <groupId>com.ververica</groupId>
            <artifactId>flink-connector-mysql-cdc</artifactId>
            <version>2.0.0</version>
        </dependency> 

建mysqlcdc的flinktable

CREATE TABLE cdc_mysql_source (
  id bigint
  ,name VARCHAR
  ,age int
  ,sex VARCHAR
  ,address VARCHAR
  ,PRIMARY KEY (id) NOT ENFORCED
) WITH (
 'connector' = 'mysql-cdc',
 'hostname' = 'xxx',
 'port' = 'xxx',
 'username' = 'xxx',
 'password' = 'xxx',
 'database-name' = 'xxx',
 'table-name' = 'xxx'
);

这个地方前提是mysql要开启bin-log日志,且username不是root的话,需要给该用户全库全表的权限,如下赋权

GRANT ALL ON *.* TO 'xxx'@'%';

创建kafka的flinktable表

create table `kafka_sink`(
id bigint,
name STRING,
age int,
sex STRING,
address STRING,
PRIMARY KEY (id) NOT ENFORCED
) WITH (
'connector' = 'kafka', 
'properties.bootstrap.servers' = 'xxx',
'properties.group.id' = 'xxx',
'topic' = 'xxx',
'format' = 'debezium-json'
)

如果要写入的话直接insert即可

insert into kafka_sink select * from cdc_mysql_source ;

这里connector的类型可以是upsert-kafka
建表时其他信息都是一样的,不同的是存放在topic里的数据格式会有不同
在这里插入图片描述
在这里插入图片描述
如果写入doris的话在maven项目里也需要先导入依赖

        <dependency>
            <groupId>org.apache.doris</groupId>
            <artifactId>flink-doris-connector-1.13_2.12</artifactId>
            <version>1.0.3</version>
        </dependency>

建doris的flinktable

CREATE TABLE doris_sink (
id bigint,
name STRING,
age int,
sex STRING,
address STRING
) 
WITH (
  'connector' = 'doris',
  'fenodes' = 'xxx',
  'table.identifier' = 'xxx.xxx',
  'username' = 'root',
  'password' = 'xxx'
);

fenodes要填的是FE的http端口,且这里的用户密码是登录http的root账号及密码
同理将mysql的数据直接跟doris实时同步只需要执行insert

insert into doris_sink select id,name,age,sex,address from cdc_mysql_source;

将数据写入iceberg,以hadoop_catalog为例
首先需要建catalog

CREATE CATALOG hadoop_catalog
WITH (
'type' = 'iceberg',
'warehouse' = 'hdfs://xxx:xxx/xxx',
'catalog-type' = 'hadoop'
)

查看所有库
show databases;
查看所有catalog
show catalogs;
创建iceberg的flinktable表

CREATE TABLE if not exists hadoop_catalog.icebergTest.icebergtest
(
id bigint,
name STRING,
age int,
sex STRING,
address STRING,
PRIMARY KEY (id) NOT ENFORCED
)
WITH (
'format-version'='2',
'write.upsert.enabled'='true',
'write.metadata.delete-after-commit.enabled' = 'true',
'write.distribution-mode' = 'hash' 
)

format-version为2时可以使iceberg支持更新操作
执行kafka到iceberg的写入

insert into hadoop_catalog.icebergTest.icebergtest /* OPTIONS('equality-field-columns'='id') */ select id, name, age, sex,address from default_catalog.default_database.kafka_sink;
<think>嗯,用户遇到了FlinkCDC读取MySQL Binlog日志时某个字段丢失的问题,需要找到解决方案。首先,我得回忆一下FlinkCDC的工作原理。FlinkCDC应该是通过监控MySQL的Binlog来捕获数据变更的,然后把这些变更事件发送到Kafka或者其他目的地。 那字段丢失的可能原因是什么呢?可能有几个方面。首先,检查Binlog格式是否正确,因为MySQL需要配置为ROW模式,这样才能记录完整的行数据。如果格式不对,可能导致字段信息不全。其次,FlinkCDC的配置是否正确,比如是否有指定正确的数据库、,或者是否过滤掉了某些字段。还有可能是数据类型转换的问题,比如某些特殊类型在转换过程中丢失了。另外,Kafka的序列化器是否正确,比如使用JSON格式时是否配置了正确的序列化方式,导致字段未被正确序列化而丢失。 接下来,根据引用中的内容,用户之前用StreamSets采集Binlog有问题,现在改用FlinkCDC。引用[2]提到FlinkCDC数据保存到Kafka,可能需要检查FlinkCDC的配置文件和Kafka的生产者配置。比如,是否在FlinkCDC的配置中正确指定了需要捕获的库和,是否有字段映射错误或者过滤设置。此外,Kafka的序列化器是否支持复杂类型,比如使用Avro或者JSON,可能需要配置相应的转换器。 解决方案的话,首先确认MySQL的Binlog设置,确保是ROW模式。然后检查FlinkCDC的任务配置,确认字段映射是否正确,特别是目标结构是否与源一致。另外,查看是否有Null值处理的问题,可能需要调整FlinkCDC的处理逻辑,比如使用COALESCE函数处理Null值。同时,检查Kafka的序列化配置,确保字段被正确转换和传输。如果问题依然存在,可能需要查看FlinkCDC的日志,定位具体是哪个环节导致字段丢失,比如在读取Binlog时就已经丢失,还是在写入Kafka时发生的。 用户提到的字段为Null的情况,可能和MySQL的Binlog记录有关,比如当字段值为Null时,Binlog可能不会记录该字段,导致下游处理时丢失。这时候需要确保FlinkCDC能够正确处理Null值,或者在数据写入Kafka时进行默认值替换。 另外,参考引用中的配置,比如在FlinkCDC的配置文件中正确指定库和,避免过滤掉需要的字段。同时,确保Kafka的Topic配置正确,数据能够完整传输。如果使用JSON序列化,可能需要配置serializer.encode.decimal.as.plain.number=true等参数,避免数值类型转换问题。 总结下来,解决问题的步骤应该是:检查Binlog配置,验证FlinkCDC配置,调整Null值处理,检查序列化设置,查看日志定位问题。如果这些步骤都做完了,应该能解决字段丢失的问题。</think>### FlinkCDC读取MySQL Binlog字段丢失问题解决方案 #### 1. 检查MySQL Binlog配置 确保MySQL的Binlog格式为**ROW模式**,这是FlinkCDC正常解析字段的必要条件。通过以下命令验证: ```sql SHOW GLOBAL VARIABLES LIKE 'binlog_format'; ``` 若未设置为`ROW`,需修改MySQL配置文件(如`my.cnf`): ```properties [mysqld] binlog_format = ROW server_id = 1 ``` #### 2. 验证FlinkCDC任务配置 在FlinkCDC的配置文件中(如`flink-conf.yaml`),需明确指定需要捕获的数据库和,并关闭字段过滤。例如: ```yaml # 指定捕获的数据库和 database-name = your_db table-name = your_table # 禁用字段过滤(确保所有字段被捕获) column.exclude.list = "" ``` #### 3. 处理Null值字段 若字段值为`NULL`时丢失,需在FlinkCDC的SQL逻辑中显式处理空值。例如使用`COALESCE`函数: ```sql CREATE TABLE kafka_output ( id INT, missing_field VARCHAR COMMENT '原字段允许NULL时需处理', ... ) WITH ( 'connector' = 'kafka', 'format' = 'json', 'json.ignore-parse-errors' = 'true' -- 忽略解析错误 ); INSERT INTO kafka_output SELECT id, COALESCE(missing_field, 'default_value') AS missing_field -- 替换NULL值 FROM mysql_source_table; ``` #### 4. 检查Kafka序列化配置 在Kafka生产者配置中,需确保序列化器正确处理字段类型。例如使用JSON格式时: ```yaml 'format' = 'json', 'json.fail-on-missing-field' = 'false', -- 允许字段缺失 'json.map-null-key.mode' = 'DROP' -- 处理Null键 ``` #### 5. 日志排查与调试 - **查看Flink任务日志**:定位字段丢失发生在Binlog解析阶段还是写入Kafka阶段。 - **对比原始Binlog数据**:通过`SHOW BINLOG EVENTS`命令验证字段是否存在于原始日志中。 - **启用FlinkCDC调试模式**:在日志中输出详细字段解析信息。 #### 6. 其他优化建议 - **升级组件版本**:确保FlinkCDCMySQLKafka均为较新稳定版本(如FlinkCDC 2.3+,MySQL 5.7+)[^2]。 - **Schema兼容性检查**:确保目标Kafka Topic的Schema与源字段完全匹配。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MIDSUMMER_yy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值