map理解

本文详细介绍了目标检测中的关键指标mAP(mean Average Precision),包括其定义和计算方法,重点剖析了YOLOv3中的IOU概念,并讨论了如何设置置信度和IOU阈值来实现NMS和mAP计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目标检测评价标准mAP
在这里插入图片描述

目标检测算法的评估指标:mAP定义及计算方式
在这里插入图片描述

yolo论文中IOU/AP/MAP/NMS概念详解

在这里插入图片描述

Map:算出recall从0到 1时的准确率,计算准确率的平均值,对所有类别求平均,以P,R作为指标都不够全面,所以以PR曲线下的面积当作尺度。

  • 3.交并比(IOU)
    边界框的准确度可以用IOU进行表示,IOU等于计算两个边界框交集和并集之比;
    一般约定,在检测中,IOU>0.5,则认为检测正确,一般阈值设为0.5。
  • YOLOv3详解

在这里插入图片描述

彻底搞懂目标检测进行NMS和计算mAP时的置信度阈值和IoU阈值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值