- 将得到的训练集以表的形式展现
pd.concat([pd.DataFrame(wine.data),pd.DataFrame(wine.target)],axis=1)
- 查看训练集的特征名称,标签名称
datasets.feature_names datasets.target_names
-
决策树DecisionTreeClassfier的参数
-
Criterion用来决定不纯度的计算方法,①entropy:信息熵 条件概率×条件概率的对数 再累加取其相反数 ②gini:基尼系数 1减去条件概率平方的累加和
-
score返回预测的精确度
clf=tree.DecisionTreeClassifier(criterion="entropy") clf=clf.fit(Xtrain,Ytrain) score=clf.score(Xtest,Ytest)