FCN(全卷积神经网络)详解

FCN是深度学习在语义分割的开创性工作,它将CNN的全连接层替换为卷积层,适应任意尺寸输入。通过反卷积层恢复图像尺寸,采用跳级结构保证精度。FCN包含FCN-32s、FCN-16s和FCN-8s,其中FCN-8s效果最佳,通常所说的FCN指FCN-8s。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.综述

FCN(全卷积神经网络)图像语义分割的一种框架,是深度学习用于语义分割领域的开山之作。FCN将传统CNN后面的全连接层换成了卷积层,这样网络的输出将是热力图而非类别;同时,为解决卷积和池化导致图像尺寸的变小,使用上采样方式对图像尺寸进行恢复。FCN网络的特点:

  • 不含全连接层的全卷积网络,可适应任意尺寸输入;
  • 反卷积层增大图像尺寸,输出精细结果;
  • 跳级结构,确保鲁棒性和精确性。

2.传统分类网络

以VGG16_bn (vgg16为VGG16_bn版本,去除所有Batch_normalization的模型) 为例,介绍传统图像分类网络。图中输入数据大小为(224 X 224 X 3)。
VGG分类网络
在传统VGG16分类网络中,在经过提取特征操作后加入三个全连接层进行分类(图中只画出了前面两个 ,最后一个根据不同的类别设置不同的全连接)。
注意:原始分类网络中输入大小固定是由于全连接网络导致的,而卷积操作可以实现全连接相同的功能,且可以保证输入大小为任意值。

3.FCN模型

FCN模型包括FCN-32s、FCN-16s和FCN-8s。其中FCN-8s效果最好,且当前所说的FCN一般均指FCN-8s。

<
回答: 是的,FCN(Fully Convolutional Network)属于卷积神经网络FCN是一种用于语义分割的网络,它是将普通的分类卷积神经网络改造成能够进行语义分割的网络。FCN通过修改分类器,使得网络能够进行密集预测,同时融合不同层次的特征图信息来获取更准确的分割结果。因此,FCN是通过卷积操作来提取图像的特征,并进行像素级别的语义分割的网络模型123 #### 引用[.reference_title] - *1* [语义分割入门系列之 FCN全卷积神经网络)](https://blog.csdn.net/wildridder/article/details/103859277)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}} ] [.reference_item] - *2* [FCN全卷积神经网络](https://blog.csdn.net/m0_46409054/article/details/127630997)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}} ] [.reference_item] - *3* [图像分割-FCN全卷积神经网络(完整代码详解)](https://blog.csdn.net/m0_63077499/article/details/127375650)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sjx_alo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值