1.综述
FCN(全卷积神经网络)图像语义分割的一种框架,是深度学习用于语义分割领域的开山之作。FCN将传统CNN后面的全连接层换成了卷积层,这样网络的输出将是热力图而非类别;同时,为解决卷积和池化导致图像尺寸的变小,使用上采样方式对图像尺寸进行恢复。FCN网络的特点:
- 不含全连接层的全卷积网络,可适应任意尺寸输入;
- 反卷积层增大图像尺寸,输出精细结果;
- 跳级结构,确保鲁棒性和精确性。
2.传统分类网络
以VGG16_bn (vgg16为VGG16_bn版本,去除所有Batch_normalization的模型) 为例,介绍传统图像分类网络。图中输入数据大小为(224 X 224 X 3)。
在传统VGG16分类网络中,在经过提取特征操作后加入三个全连接层进行分类(图中只画出了前面两个 ,最后一个根据不同的类别设置不同的全连接)。
注意:原始分类网络中输入大小固定是由于全连接网络导致的,而卷积操作可以实现全连接相同的功能,且可以保证输入大小为任意值。
3.FCN模型
FCN模型包括FCN-32s、FCN-16s和FCN-8s。其中FCN-8s效果最好,且当前所说的FCN一般均指FCN-8s。
<