【优化理论】第四章:最优算法优化处理技巧

系列文章目录

一、机器人实战项目
二、机器人/自动驾驶导航功能算法合集
三、计算技术&硬软件开发工程篇
`最优化问题通常需要对实际需求进行定性和定量分析,建立恰当的数学模型来描述该问题,设计合适的计算方法来寻找问题的最优解,探索研究模型和算法的理论性质,考察算法的计算性能等多方面。

(一)基于多项式插值拟合目标函数,预处理后再进行线搜索算法

1、核心思想

用多项式函数来插值拟合目标函数,再利用多项式函数的性质求最值,实现求近似满足精确线搜索准则

基本思想:多项式函数的极小点是容易求得的,所以我们可用已有的函数信息,构造近似ψ(a)的多项式函数,求出该多项式函数的极小点并检验它是否满足非精确线搜索准则.若不满足,则根据新的函数信息去构造新的多项式函数.如此反复,一般能够求得满足非精确线搜索准则的步长.

2、用多项式函数来插值拟合目标函数

(1)取滑动窗口中的多个点,带入多个点,通过满秩矩阵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RoboticsTechLab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值