目录
一、前言
二、DeepSeek简介
2.1 DeepSeek 是什么
2.2 DeepSeek R1特点
2.2.1 DeepSeek-R1创新点
2.3 DeepSeek R1应用场景
2.4 与其他大模型对比
三、阿里云百炼大平台介绍
3.1 阿里云百炼大平台是什么
3.2 阿里云百炼平台主要功能
3.2.1 应用场景
3.3 为什么选择阿里云百炼平台
四、前置准备
4.1 注册百炼平台账户
4.2 获取apikey
4.3 本地安装python环境
五、代码集成使用DeepSeek-R1
5.1 获取对接文档
5.2 代码操作实例
5.2.1 基本操作调用
5.2.2 多轮对话
5.2.3 流式输出
六、写在文末
一、前言
DeepSeek的火热让全世界见证了一场国产AI大模型走向巅峰的盛宴。DeepSeek的横空出世一方面让AI大模型的格局得到重塑,另一方面,对于普通人来说,也有机会零距离的体验到更懂国人的AI大模型。从很多使用过后的小伙伴们的反馈来看,DeepSeek的回答更有作为”人”的人性且有温度的回答。另一方面,很多团队开始尝试本地部署DeepSeek模型,不过考虑到部署依赖的硬件环境资源开销巨大,所以许多云厂商陆续入场,提供低成本、甚至接近零成本的接入方式,方便开发者或应用对接者快速使用,比如硅基流动、蓝耘智算平台、阿里云百炼平台等,本文以阿里云百炼平台为例,分享如何基于阿里云百炼平台快速接入和使用DeepSeek模型。
二、DeepSeek简介
2.1 DeepSeek 是什么
DeepSeek是一款多模态AI工具,融合了文本生成、图像创作等多种功能,致力于为用户提供无缝的创作体验。由中国对冲基金高毅资产旗下团队打造,采用深度学习和高效的神经网络技术,极大地提升了回应速度和内容质量。用户只需简单描述需求,DeepSeek便能生成多样化且富有创意的内容,彻底改变了人们与AI的互动方式。快速入口: DeepSeek
- DeepSeek是一款专为自然语言处理(NLP)和其他复杂任务设计的先进大规模深度学习模型;
- DeepSeek采用创新的架构设计,能够高效提取特征,减少冗余计算,从而大幅提升数据处理速度并缩短训练时间;
- DeepSeek R1泛化能力非常强,无论在新数据还是旧数据上,都能表现出色,有效降低过拟合的风险。此外,其参数管理经过优化,不仅提高了训练效率,还减少了内存占用,使其在资源受限的环境中也能高效运行。
2.2 DeepSeek R1特点
DeepSeek R1模型为当前逻辑推理最强大的模型之一,其具备如下重要特点:
模型训练优化
- 冷启动数据:为解决冷启动阶段的不稳定性,开发团队收集了数千个高质量冷启动数据,用于微调基础模型。
- 奖励机制:通过准确性奖励、格式奖励和语言一致性奖励等机制,优化模型输出的质量和可读性。
- 拒绝采样技术:在生成高质量样本时,拒绝采样技术被用来过滤低质量输出,确保推理结果的可靠性。
核心技术架构
- 强化学习驱动:DeepSeek-R1 是首个完全通过强化学习训练的大型语言模型,无需依赖监督微调(SFT)或人工标注数据。它采用组相对策略优化(GRPO)算法,通过奖励机制和规则引导模型生成结构化思维链(CoT),从而提升推理能力。
- 多阶段训练流程:模型采用冷启动阶段、强化学习导向训练和全场景训练等多阶段方法。在冷启动阶段,通过少量高质量数据微调基础模型(如DeepSeek-V3-Base),然后逐步加入通用场景和指令以优化模型性能。
- 专家混合架构(MoE) :DeepSeek-R1 基于671B参数的混合专家架构,包含16个专家网络,支持多种语言和技术领域。
- 长链推理支持:模型支持长链推理(CoT),能够生成数万字的思维链,显著提高复杂任务的推理准确性。
泛化能力强
- DeepSeek R1的训练数据覆盖面极广,能够适应各种不同的任务和场景,展现出强大的跨领域适应性。
- DeepSeek 无论在文本处理、图像识别还是代码生成等多模态任务中,它都能提供稳定的性能表现。这种泛化能力使得DeepSeek R1不仅适用于特定的场景,还能在多种领域中灵活应用,为开发者提供了极大的便利。
优异的推理性能
- 推理能力:DeepSeek-R1 在数学、代码和自然语言推理任务上表现出色,其推理能力媲美甚至超越了OpenAI的O1正式版。例如,在AIME 2024、MATH-500等基准测试中,其表现优于人类程序员。
- 成本效益:DeepSeek-R1 的运行成本仅为OpenAI的3%左右,同时提供了API服务,降低了企业用户的使用门槛。
高效的网络架构
- DeepSeek R1采用创新的深度学习架构,相比其他大语言模型,可以通过减少计算冗余,大幅提高了数据处理效率。
- DeepSeek R1 在处理复杂数据时,能够快速提取关键特征,显著缩短训练和推理时间。
- 这种高效的架构设计使其在面对大规模数据集时,依然能够保持高效的处理能力,为开发者节省了大量的时间和计算资源。
2.2.1 DeepSeek-R1创新点
相比其他大模型,DeepSeek R1具备下面的创新点:
- 自我进化能力
- 模型在训练过程中展现出反思和重新评估推理步骤的能力,进一步提升了推理的稳定性和一致性。
- 蒸馏技术
- 通过蒸馏技术,DeepSeek-R1 能将大模型的推理能力迁移到更小规模的模型中,实现高效部署。
2.3 DeepSeek R1应用场景
可以说 DeepSeek R1 具备目前市面上所有大模型的优势,尤其在自然语言处理领域有着广泛的应用,如下列举了几种常见的应用场景。
- 文本生成
- 根据用户的输入,生成高质量的答案,比如:旅游规划,美食推荐,商业文案,短文,机器翻译等;
- 情感分析
- 它还能准确地分析文本中的情感倾向,为舆情分析、客户服务等场景提供有力支持。
- 教育辅导与金融分析
- 在教育领域,它可以帮助学生准备SAT和GRE考试
- 在金融领域,它可辅助分析师进行风险评估
- 智能问答