YOLOv5结合BiFPN

本文介绍了将EfficientDet中的BiFPN结构应用于YOLOv5,以替换原有的PANet层,从而提高目标检测的性能。作者修改了yolov5x.yaml配置文件,调整了concat层的连接方式,并在yolo.py中实现了pairwise add操作。目前是一个初步的结合,模型仍在训练中,后续会分享训练结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

现在yolov5的neck用的是PANet,在EfficientDet论文中提出了BiFPN结构,还有更加不错的性能。所以就尝试将yolov5中的PANet层改为BiFPN。

需要修改的地方

  • 主要是修改yaml配置文件
    我修改的是yolov5x.yaml,将concat层连接不同的layer。有三层BiFPN,最后输出为了和yolov5对应,我没有用在论文里写的p3-p7五个节点,我只用了三个。(这里应该要用relu使w>0,我训练报错就没有用relu)
  • 修改common.py
class Concat(nn.Module):
    # Concatenate a list of tensors along dimension
    def __init__(self, c1, c2):
        super(Concat, self).__init__()
        # self.relu = nn.ReLU()
        self.w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True
评论 190
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值