文章目录
- 一、实验目的
- 二、实验报告要求
- 三、实验设备(环境)
- 四、实验内容
-
- 1. 利用MATLAB绘制下列连续时间信号的波形
- 2. 利用MATLAB验证信号的基本运算
-
- 1) 以单位门函数 y ( t ) = G 1 ( t ) y(t)=G_1(t) y(t)=G1(t)为例,画出 y ( 2 t ) y(2t) y(2t)、 y ( t / 2 ) y(t/2) y(t/2)、 y ( 2 − 2 t ) y(2-2t) y(2−2t)
- 2) 画出 c o s ( t ) + c o s ( π 4 t ) cos(t)+cos(\frac{\pi}{4} t) cos(t)+cos(4πt),并观察其是否为周期函数,如果是,周期为多少?
- 3) 画出 c o s ( π t ) + c o s ( 2 π t ) cos(\pi t) + cos(2\pi t) cos(πt)+cos(2πt),并观察其是否为周期函数,如果是,周期为多少?
- 3. 卷积运算 x ( t ) = [ e − 2 t ε ( t ) ] ∗ [ e − 3 t ε ( t ) ] x(t)=[e^{-2t}ε(t)]*[e^{-3t}ε(t)] x(t)=[e−2tε(t)]∗[e−3tε(t)]
- 4. 求解系统的零状态响应
- 5. 周期信号的傅里叶级数展开
-
- 1)利用三角函数/正余弦正交函数集合,对周期信号f(t)进行三角傅里叶级数展开,写出其三角傅里叶级数表达式。
- 2)利用MATLAB画出其三角傅里叶级数展开表达式中的前3项之和(每项系数不为0),画出其前5项之和(每项系数不为0),画出其前20项之和(每项系数不为0), 观察它们近似原信号的程度。
- 3)利用虚指数正交函数集合,对周期信号f(t)进行指数傅里叶级数展开,写出其指数傅里叶级数表达式。
- 4)利用MATLAB画出其指数傅里叶级数展开表达式中的前3项之和(即n={-1,0,1}),并画出其前5项之和(即n={-2,-1,0,1,2}),画出其前21项之和(即n={-10,-9,⋯,0,1,2,⋯,10}), 观察它们近似原信号的程度。
- 五、实验体会和感悟
一、实验目的
- 掌握信号的表示及其可视化方法。
- 掌握信号基本时域运算的实现方法。
- 实现线性时不变LTI系统的全响应求解,并把基于仿真平台内置函数的仿真结果与理论计算结果进行比较。
- 实现周期信号的傅里叶级数展开。
二、实验报告要求
提交:实验报告一份,PDF格式,其他格式拒收。
实验报告中需要包括:
a) 若题目要求理论结果,报告中需要给出理论结果。
b) 结果图;图中需要有适当的标识、横坐标、纵坐标等。
c) 源代码。源代码中要有合适的注释。
d) 实验体会和感悟。
三、实验设备(环境)
操作系统Windows11/10/9/8/7
编程软件:推荐Matlab,版本不低于2016版本。
我使用的是Anaconda + Jumpyter Notebook + Python 3.9