SEnet论文学习

  SEnet是Momenta(一家国内专注于自动驾驶的公司)在ImageNet2017分类任务上夺冠的网络。ImageNet2017是最后一届ImageNet竞赛,SEnet有了很大的提高。

  论文地址:https://arxiv.org/abs/1709.01507

  github代码地址:https://github.com/hujie-frank/SENet

  神经网络中的卷积层就是一组滤波器表示对通道相邻空间域的连通模式,即在局部感受野中融合空间和通道的信息。因此产生一个问题,即不同通道的连接仅仅是受到局部感受野的控制,其仅受局部特征的影响而忽略了全局特征。而本文提出了Squeeze-and-Excitation block就是用来解决这一问题。

  本文提出的Squeeze-and-Excitation block有三部分组成,分别是Squeeze,Excitation和transform

图1 Squeeze-and-Excitation block示意图,H,W代表卷积层的尺寸,C代表卷积层的通道数

1.  Squeeze: Global Information Embedding 

我们用中文简单的理解为压缩部分,用于获取卷机层的全局信息之后将其嵌入到通道选择中。直接使用原文中的公式加以理解,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值