目录
Task3:数据的特征工程
1.特征工程目标
对于特征进行进一步分析,并对于数据进行处理
完成对于特征工程的分析,并对于数据进行一些图表或者文字总结并打卡。
2.内容介绍
常见的特征工程包括:
- 异常处理:
- 通过箱线图(或 3-Sigma)分析删除异常值;
- BOX-COX 转换(处理有偏分布);
- 长尾截断;
- 特征归一化/标准化:
- 标准化(转换为标准正态分布);
- 归一化(抓换到 [0,1] 区间);
- 针对幂律分布,可以采用公式: log(1+x1+median)log(1+x1+median)
- 数据分桶:
- 等频分桶;
- 等距分桶;
- Best-KS 分桶(类似利用基尼指数进行二分类);
- 卡方分桶;
- 缺失值处理:
- 不处理(针对类似 XGBoost 等树模型);
- 删除(缺失数据太多);
- 插值补全,包括均值/中位数/众数/建模预测/多重插补/压缩感知补全/矩阵补全等;
- 分箱,缺失值一个箱;
- 特征构造:
- 构造统计量特征,报告计数、求和、比例、标准差等;
- 时间特征,包括相对时间和绝对时间,节假日,双休日等;
- 地理信息,包括分箱,分布编码等方法;
- 非线性变换,包括 log/ 平方/ 根号等;
- 特征组合,特征交叉;
- 仁者见仁,智者见智。
- 特征筛选
- 过滤式(filter):先对数据进行特征选择,然后在训练学习器,常见的方法有 Relief/方差选择发/相关系数法/卡方检验法/互信息法;
- 包裹式(wrapper):直接把最终将要使用的学习器的性能作为特征子集的评价准则,常见方法有 LVM(Las Vegas Wrapper) ;
- 嵌入式(embedding):结合过滤式和包裹式,学习器训练过程中自动进行了特征选择,常见的有 lasso 回归;
- 降维
- PCA/ LDA/ ICA;
- 特征选择也是一种降维。
3.示例分析
3.1 删除异常值
这里我包装了一个异常值处理的代码,可以随便调用。
def outliers_proc(data, col_name, scale=3):
"""
用于清洗异常值,默认用 box_plot(scale=3)进行清洗
:param data: 接收 pandas 数据格式
:param col_name: pandas 列名
:param scale: 尺度
:return:
"""
def box_plot_outliers(data_ser, box_scale):
"""
利用箱线图去除异常值
:param data_ser: 接收 pandas.Series 数据格式
:param box_scale: 箱线图尺度,
:return:
"""
iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25))
val_low = data_ser.quantile(0.25) - iqr
val_up = data_ser.quantile(0.75) + iqr
rule_low = (data_ser < val_low)
rule_up = (data_ser > val_up)
return (rule_low, rule_up), (val_low, val_up)
data_n = data.copy()
data_series = data_n[col_name]
rule, value = box_plot_outliers(data_series, box_scale=scale)
index = np.arange(data_series.shape[0])[rule[0] | rule[1]]
print("Delete number is: {}".format(len(index)))
data_n = data_n.drop(index)
data_n.reset_index(drop=True, inplace=True)
print("Now column number is: {}".format(data_n.shape[0]))
index_low = np.arange(data_series.shape[0])[rule[0]]
outliers = data_series.iloc[index_low]
print("Description of data less than the lower bound is:")
print(pd.Series(outliers).describe())
index_up = np.arange(data_series.shape[0])[rule[1]]
outliers = data_series.iloc[index_up]
print("Description of data larger than the upper bound is:")
print(pd.Series(outliers).describe())
fig, ax = plt.subplots(1, 2, figsize=(10, 7))
sns.boxplot(y=data[col_name], data=data, palette="Set1", ax=ax[0])
sns.boxplot(y=data_n[col_name], data=data_n, palette="Set1", ax=ax[1])
return data_n
我们可以删掉一些异常数据,以 power 为例。
这里删不删同学可以自行判断
但是要注意 test 的数据不能删 = = 不能掩耳盗铃是不是
Train_data = outliers_proc(Train_data, 'power', scale=3)
3.2 特征构造
把特征分成三部分,分别是日期特征、类别特征、数值特征。然后看看每一维特征的缺失率、n unique等信息,可以发现seller、offerType这两个特征可以删掉了,所有样本就一个取值,没什么用。从这里还可以发现匿名特征里面的v_0到v_4、v_10到v_14感觉长的有点像,貌似有很多相似的地方。
date_cols = ['regDate', 'creatDate']
cate_cols = ['name', 'model', 'brand', 'bodyType', 'fuelType', 'gearbox', 'notRepairedDamage', 'regionCode', 'seller', 'offerType']
num_cols = ['power', 'kilometer'] + ['v_{}'.format(i) for i in range(15)]
cols = date_cols + cate_cols + num_cols
tmp = pd.DataFrame()
tmp['count'] = df[cols].count().values
tmp['missing_rate'] = (df.shape[0] - tmp['count']) / df.shape[0]
tmp['nunique'] = df[cols].nunique().values
tmp['max_value_counts'] = [df[f].value_counts().values[0] for f in cols]
tmp['max_value_counts_prop'] = tmp['max_value_counts'] / df.shape[0]
tmp['max_value_counts_value'] = [df[f].value_counts().index[0] for f in cols]
tmp.index = cols
tmp
查看结果的分布情况
把日期列处理一下,提取年、月、日、星期等信息。
这里有些日期异常的样本,月份出现了0,因此需要开个函数单独处理一下。
plt.figure()
plt.figure(figsize=(16, 6))
i = 1
for f in date_cols:
for col in ['year', 'month', 'day', 'dayofweek']:
plt.subplot(2, 4, i)
i += 1
v = df[f + '_' + col].value_counts()
fig = sns.barplot(x=v.index, y=v.values)
for item in fig.get_xticklabels():
item.set_rotation(90)
plt.title(f + '_' + col)
plt.tight_layout()
plt.show()
来看一下各个数值特征跟price的相关性。跟price相关性比较高的有汽车注册年份(regDate_year),应该可以理解为车越新,价格越高;汽车已行驶公里数(kilometer)也还行,应该可以理解为跑的路程越多,车就越旧,价格就越低;匿名特征里面的v_0、v_3、v_8、v_12看起来跟price的相关性很高,原因就不知道了。除了跟price的相关性,还可以发现有些特征跟特征之间的相关性也很高,比如v_1跟v_6、v_2跟v_7、v_3跟v_8、v_4跟v_9等,这些特征之间可能存在冗余现象,训练的时候可以依据效果尝试去掉一部分,或者拆分成两部分,做模型融合。
corr1 = abs(df[~df['price'].isnull()][['price'] + date_cols + num_cols].corr())
plt.figure(figsize=(10, 10))
sns.heatmap(corr1, linewidths=0.1, cmap=sns.cm.rocket_r)
接下来看看15维匿名特征分别在训练集和测试集上的分布,如果发现分布不一致的,可以尝试处理。但是貌似这15维特征在训练集和测试集上的分布基本上都挺一致的,无论多奇怪的分布,两个数据集上都挺一致。
plt.figure()
plt.figure(figsize=(15, 15))
i = 1
for f in num_cols[2:]:
plt.subplot(5, 3, i)
i += 1
sns.distplot(df[~df['price'].isnull()][f], label='train', color='y', hist=False)
sns.distplot(df[df['price'].isnull()][f], label='test', color='g', hist=False)
plt.tight_layout()
plt.show()
简单看几个n unique比较小的特征上面的price的均值的分布。可以发现regDate_year和kilometer的趋势变化很明显,这也对应了上面的相关性分布,这两个特征跟price的相关性都挺高。kilometer应该是被离散化过的,只保留了整数 。
plt.figure()
plt.figure(figsize=(20, 18))
i = 1
for f in cate_cols + date_cols + num_cols:
if df[f].nunique() <= 50:
plt.subplot(5, 3, i)
i += 1
v = df[~df['price'].isnull()].groupby(f)['price'].agg({f + '_price_mean': 'mean'}).reset_index()
fig = sns.barplot(x=f, y=f + '_price_mean', data=v)
for item in fig.get_xticklabels():
item.set_rotation(90)
plt.tight_layout()
plt.show()
3.3 经验总结
特征工程是比赛中最至关重要的的一块,特别的传统的比赛,大家的模型可能都差不多,调参带来的效果增幅是非常有限的,但特征工程的好坏往往会决定了最终的排名和成绩。
特征工程的主要目的还是在于将数据转换为能更好地表示潜在问题的特征,从而提高机器学习的性能。比如,异常值处理是为了去除噪声,填补缺失值可以加入先验知识等。
特征构造也属于特征工程的一部分,其目的是为了增强数据的表达。
有些比赛的特征是匿名特征,这导致我们并不清楚特征相互直接的关联性,这时我们就只有单纯基于特征进行处理,比如装箱,groupby,agg 等这样一些操作进行一些特征统计,此外还可以对特征进行进一步的 log,exp 等变换,或者对多个特征进行四则运算(如上面我们算出的使用时长),多项式组合等然后进行筛选。由于特性的匿名性其实限制了很多对于特征的处理,当然有些时候用 NN 去提取一些特征也会达到意想不到的良好效果。
对于知道特征含义(非匿名)的特征工程,特别是在工业类型比赛中,会基于信号处理,频域提取,丰度,偏度等构建更为有实际意义的特征,这就是结合背景的特征构建,在推荐系统中也是这样的,各种类型点击率统计,各时段统计,加用户属性的统计等等,这样一种特征构建往往要深入分析背后的业务逻辑或者说物理原理,从而才能更好的找到 magic。
当然特征工程其实是和模型结合在一起的,这就是为什么要为 LR NN 做分桶和特征归一化的原因,而对于特征的处理效果和特征重要性等往往要通过模型来验证。
总的来说,特征工程是一个入门简单,但想精通非常难的一件事。