卷积神经网络 (CNN) 是深度学习中最常用的网络类型之一,常用于图像分类和识别。在本文中,我们将使用 TensorFlow 2.0 构建一个简单的 CNN 模型,并在 CIFAR-10 数据集上进行训练和评估。
首先,我们需要安装 TensorFlow 2.0:
pip install tensorflow
接下来,我们导入所需的库:
import tensorflow as tf
from tensorflow import keras
然后我们导入CIFAR-10数据集,并将其分为训练集和测试集:
(x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()
接下来,我们将对图像进行归一化处理,然后构建我们的 CNN 模型。我们将使用 Keras Sequential API 来构建模型,并使用两个卷积层和一个全连接层。
x_train = x_train / 255.0
x_test = x_test / 255.0
model = keras.Sequential()
model.add(keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=