HDOJ 4565 So Easy!

So Easy!

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3896    Accepted Submission(s): 1284


Problem Description
  A sequence Sn is defined as:

Where a, b, n, m are positive integers.┌x┐is the ceil of x. For example, ┌3.14┐=4. You are to calculate Sn.
  You, a top coder, say: So easy!
 

Input
  There are several test cases, each test case in one line contains four positive integers: a, b, n, m. Where 0< a, m < 215, (a-1)2< b < a2, 0 < b, n < 231.The input will finish with the end of file.
 

Output
  For each the case, output an integer Sn.
 

Sample Input
2 3 1 2013 2 3 2 2013 2 2 1 2013
 

Sample Output
4 14 4
 

前几天还看过这个题,没有想出来,这两天看了矩阵,现在来看就是矩阵的题,推一下转移矩阵就行,算是矩阵的水题吧;
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
int n=2;
long long mod;
struct Matrix
{
    long long m[2][2];
}M;
Matrix Mult(Matrix a,Matrix b)
{
    Matrix ans;
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<n;j++)
        {
            ans.m[i][j]=0;
            for(int k=0;k<n;k++)
            {
                ans.m[i][j]+=a.m[i][k]*b.m[k][j]%mod;
                ans.m[i][j]%=mod;
            }
        }
    }

    return ans;
}
Matrix quickpow(Matrix a,long long b)
{
    Matrix ans;
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<n;j++)
        {
            if(i==j)
                ans.m[i][j]=1;
            else
                ans.m[i][j]=0;
        }
    }
    while(b)
    {
        if(b&1)
            ans=Mult(ans,a);
        a=Mult(a,a);
        b/=2;
    }
    return ans;
}
int main()
{
    long long x,y,m;
    Matrix N,M;
    while(scanf("%lld%lld%lld%lld",&x,&y,&m,&mod)!=EOF)
    {
        memset(N.m,0,sizeof(N.m));
        memset(M.m,0,sizeof(M.m));
        M.m[0][0]=x,M.m[0][1]=y;
        M.m[1][0]=1,M.m[1][1]=x;
        N.m[0][0]=x,N.m[1][0]=1;
        M=quickpow(M,m-1);
        N=Mult(M,N);
        printf("%lld\n",2*N.m[0][0]%mod);
    }

return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值