对话流的自动化设计

本文介绍了一种预训练模型的设计方案,该模型旨在通过学习催收员与用户的对话来掌握连续对话状态,并能够预测对话流程的下一步。模型还能够进行句子级别的分类与生成,为对话系统提供强大的支撑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**设计一个预训练模型,从 催收员与用户的对话中进行学习连续对话状态; 学习生成下一句,从句子级别进行分类或者生成

**下游任务,学习 对话流的状态转移,语义embedding作为节点,进行随机游走

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值