误差分析计算公式及其 matlab 代码实现(mse、mape、rmse等)

本文深入解析了残差平方和(SSE)、均方误差(MSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方根误差(RMSE)及决定系数(R2)等常见误差评估指标的计算公式与代码实现,为模型评估提供了全面指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

残差平方和(SSE)

计算公式:

sse

代码实现:

sse = sum((YReal - YPred).^2);

均方误差(MSE)

计算公式:

mse

代码实现:

mse = sqrt(sum((YReal - YPred).^2)) ./ n;

平均绝对误差(MAE)

计算公式:

mae

代码实现:

mae = mean(abs(YReal - YPred));

平均绝对百分比误差(MAPE)

计算公式:

MATLAB是一种强大的数值计算环境,常用于处理各种科学计算任务。如果你需要在MATLAB中计算两个Excel文件的数据之间的均方误差MSE)、均方根误差RMSE)、平均绝对误差(MAE)、平均百分比误差MAPE)以及R²值,你需要先读取Excel数据,然后按照统计方法进行计算。以下是步骤概述: 1. **导入Excel数据**: 使用`readtable`函数从Excel文件中加载数据,例如: ```matlab data1 = readtable('file1.xlsx'); data2 = readtable('file2.xlsx'); ``` 2. **预处理数据**: 确保两份数据集具有相同的列和行数,并对应处理缺失值。 3. **计算MSE**: 表达式通常是`(y1 - y2).^2`, 其中y1和y2分别对应于两组数据,求所有元素的均值: ```matlab mse = mean((data1.Y - data2.Y).^2); ``` 4. **计算RMSE**: 对MSE开平方得到: ```matlab rmse = sqrt(mse); ``` 5. **计算MAE**: 平均绝对差异: ```matlab mae = mean(abs(data1.Y - data2.Y)); ``` 6. **计算MAPE**: 需要将每个预测值除以其真实值并取绝对值,然后求平均百分比: ```matlab mape = mean(absolute(data1.Y./data2.Y - 1)) * 100; ``` 7. **计算R²(决定系数)**: 如果`lmfit`或`regress`函数可用(针对回归分析),可以计算线性模型的R²: ```matlab linearModel = fitlm(data1, 'Y ~ X'); % 替换为你的自变量和因变量 r2 = linearModel.Rsquared.Ordinary; ``` 完成以上步骤后,你会得到所需指标的值。记得检查数据是否满足线性或其他假设,以便准确地应用R²。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李培冠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值