1.什么是神经网络?
神经网络(Neural Network)以人脑中的神经网络为启发而产生的,最著名对的算法是backpropagation(BP)算法。可用来解决分类问题,也可用来解决回归问题(详情见前言)
2.多层向前神经网络(Multiplier Feed-Forward Neural Network)
多层向前神经网络中使用了BP算法:
- 通过迭代性来处理训练集中的实例
- 计算经过神经网络后预测值和真实值之间的误差
- 反向最小化误差更新两个神经节点之间的误差
- 终止条件:权重的更新低于某个阈值、预测的错误率低于某个阈值、达到预设的循环次数
多层向前神经网络的组成,每一层由单元组成(图中小圈圈)
输入层:由训练集的实例特征向量传入
隐藏层:层数为一至任意多个,输入和输出只有一层
输出层:输出结果
注:
- 经过权重节点传入下一层,一层的输出是下一层的输入
- 作为多层向前神经网络,理论上,如果有足够多的隐藏层和足够大的训练集,可以模拟出任何方程
- 上图中有两层(输入层不算),两个神经节点之间连线有权值