机器学习之神经网络NN


1.什么是神经网络?

神经网络(Neural Network)以人脑中的神经网络为启发而产生的,最著名对的算法是backpropagation(BP)算法。可用来解决分类问题,也可用来解决回归问题(详情见前言

2.多层向前神经网络(Multiplier Feed-Forward Neural Network)

多层向前神经网络中使用了BP算法

  • 通过迭代性来处理训练集中的实例
  • 计算经过神经网络后预测值和真实值之间的误差
  • 反向最小化误差更新两个神经节点之间的误差
  • 终止条件:权重的更新低于某个阈值、预测的错误率低于某个阈值、达到预设的循环次数

多层向前神经网络的组成,每一层由单元组成(图中小圈圈)
输入层:由训练集的实例特征向量传入
隐藏层:层数为一至任意多个,输入和输出只有一层
输出层:输出结果
注:

  • 经过权重节点传入下一层,一层的输出是下一层的输入
  • 作为多层向前神经网络,理论上,如果有足够多的隐藏层和足够大的训练集,可以模拟出任何方程
    在这里插入图片描述
  • 上图中有两层(输入层不算),两个神经节点之间连线有权值

3. 设计神经网络

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值