概率论第1记:基础概念

本文详细介绍了概率论的基础概念,包括样本空间、随机事件、频率与概率的性质,以及条件概率、事件独立性等关键知识点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基础概念

一次随机试验所有可能的结果组成的集合称为样本空间
样本空间的每一个元素称为样本点
样本空间的任一子集称为一个随机事件。只有一个样本点的子集称为基本事件
如果一次实验中,某随机事件包含的样本点出现了,我们称该事件发生了。
它们之间的关系可以用图表示:
在这里插入图片描述
特别的,整个样本空间由于每次试验一定出现S的样本点,所以,S称为必然事件。不包含任何样本点的空集∅称为不可能事件

随机事件的关系运算

事件是集合,所以也有集合之间的运算。
如果事件A发生必然导致事件B发生,称事件B包含事件A,写作:A⊂BA\subset BAB,如果两者互相包含,则成A=B。
和时间:若事件A事件B至少有一个发生,这一事件成为A和B的和事件,记作A∪B,也记作A+B
这句话这么理解:如果事件C=A+B,那么对于事件C来说,C若发生,那么A和B至少有一个要发生才成立。
积事件,记作A∩B,也称为交事件。
若某事件C若要发生需事件A发生且事件B发生,则称此事件为事件A和事件B的交事件(或积事件)。记为A∩B或AB。
PS:从定义可以看出,和事件(A+B)相当于逻辑运算的or,积事件相当于逻辑运算的and
差事件,记作A-B
若时间C=A-B,事件C发生的条件是:A发生,而且B不发生。该事件的样本点属于事件A,并且不属于事件B
事件运算符合集合运算的交换律,结合律和分配律,以及德摩根定律:
A∩B‾=A‾∪B‾\overline{A\cap B}=\overline{A}\cup \overline{B}AB=AB
A∪B‾=A‾∩B‾\overline{A\cup B}=\overline{A}\cap \overline{B}AB=AB
两个事件的积事件如果为空:A∩B=∅,则称二者是不相容事件(注意和以后不相关事件定义的区别)
两个事件A,B,如果A∪B=S,而且A∩B=∅,则称二者互为“逆事件”或“对立事件”
以上关系用文氏图表示如下:

随机事件的频率

在相同条件下重复实验n次,事件A发生了fa次,称fa为频数,fa/n为频率,当n足够大的时候,通常用频率来预估“概率”
概率和频率具有基本的三个性质:
以Rn(A),Rn(B)分别表示事件A和事件B在n次重复实验中发生的频率(概率),则有以下三个性质:

  1. 对于任意时间A,有0≤Rn(A)≤1
  2. 对于必然事件S,有Rn(S)=1
  3. Rn(A∪B)=Rn(A)+Rn(B)-Rn(AB),尤其A,B是互不相容事件的是有,由于AB=∅,所以Rn(AB)=0,Rn(A∪B)=Rn(A)+Rn(B)

古典概率模型

所以古典概率模型是指具有以下两个特征的随机实验模型:

  1. 实验的样本空间具有有限个样本点
  2. 每次实验中,各个基本事件的发生概率相同。

很显然,古典概率模型中,如果样本空间有n个样本点,某一事件包含m个样本点,则该事件发生的概率为:m/n
概率还具有以下三个性质:
1.P(A‾)=1−P(A)P(\overline{A})=1-P(A)P(A)=1P(A)
2.P(∅)=0
3.如果两个事件A⊂BA\subset BAB,则有P(B-A)=P(B)-P(A)

条件概率

所谓条件概率,就是在已知事件A发生的条件下事件B发生的概率,记作Rn(B|A)=Rn(AB)Rn(A)\frac{R_{n}(AB)}{R_{n}(A)}Rn(A)Rn(AB)
变换一下,可得:
Rn(AB)=Rn(B∣A)∗Rn(A)R_{n}(AB)=R_{n}(B|A)*R_{n}(A)Rn(AB)=Rn(BA)Rn(A)
因为:AB=BA,所以:Rn(AB)=Rn(BA)=Rn(A∣B)∗Rn(B)R_{n}(AB)=R_{n}(BA)=R_{n}(A|B)*R_{n}(B)Rn(AB)=Rn(BA)=Rn(AB)Rn(B)
即:Rn(A∣B)∗Rn(B)=Rn(B∣A)∗Rn(A)R_{n}(A|B)*R_{n}(B)=R_{n}(B|A)*R_{n}(A)Rn(AB)Rn(B)=Rn(BA)Rn(A)
这个推论在推到全概率公式和贝叶斯公式的时候有用。
很显然,条件概率也具有概率的如下几个性质:
1.对于任意事件P(B|A),有0≤P(B|A)≤1
2.P(S|A)=1
3.若B1,B2,…Bn两两互不相容,则P(B1∪B2∪…Bn|A)=P(B1|A)+P(B2|A)+…+P(Bn|A)
4.P(B‾∣A)=1−P(B∣A)P(\overline{B}|A)=1-P(B|A)P(BA)=1P(BA)
5.对于任意两个事件:
P(B∪C|A)=P(B|A)+P(C|A)-P(BC|A)

事件的独立性

如果P(B|A)=P(B),也就是说,事件A发生与否,对事件B的发生没有影响,那么责成事件A,B称为相互独立事件。
显然,对于相互独立的两个事件,因为
P(AB)=P(B|A)*P(A),可推出:P(AB)=P(B)*P(A)
P(AB)=P(A|B)*P(B),可推出:P(AB)=P(A)*P(B)

全概率公式和贝叶斯公式

设实验E的样本空间S,B1…Bn是实验E的n个两两互不相容的事件,且有B1∪…Bn=S,又如果A是实验E的任意一个时间,则有
A=AS=A(B1∪…Bn)。于是事件A被分为n个两两互不相容的事件:AB1,…,ABn(证明很简单ABiABj=AABiBj=AA∅=∅)
故可推出:P(A)=P(AB1)+…+P(ABn)---------这个公式就是全概率公式
贝叶斯公式由全概率公式推出:
P(Bi|A)=P(A∣Bi∗P(Bi)P(A)=P(A∣Bi)∗P(Bi)P(A∣B1)∗P(B1)+...+P(A∣Bn)∗P(Bn)\frac{P(A|B_{i}*P(B_{i})}{P(A)}=\frac{P(A|B_{i})*P(B_{i})}{P(A|B_{1})*P(B_{1})+...+P(A|B_{n})*P(B_{n})}P(A)P(ABiP(Bi)=P(AB1)P(B1)+...+P(ABn)P(Bn)P(ABi)P(Bi)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值