TF显示矩阵的时候,一开始对于高维张量的显示有些不适应,总结一下:
先看代码:
import numpy as np
T1=np.array(np.random.randint(1,9,[5]))
print("1维数据的显示:\n",T1)
T2=np.array(np.random.randint(1,9,[2,3]))
print("2维数据的显示:\n",T2)
T3=np.array(np.random.randint(1,9,[2,3,4]))
print("3维数据的显示:\n",T3)
T4=np.array(np.random.randint(1,9,[4,3,2,4]))
print("4维数据的显示:\n",T4)
输出结果:
1维数据的显示:
[3 3 5 1 2]
2维数据的显示:
[[1 4 7]
[6 6 3]]
3维数据的显示:
[[[8 4 8 8]
[4 8 1 6]
[6 1 2 2]]
[[6 7 8 1]
[6 2 3 4]
[5 8 6 5]]]
4维数据的显示:
[[[[4 8 5 8]
[4 8 6 3]]
[[5 4 3 1]
[3 4 5 8]]
[[2 2 3 8]
[7 8 3 6]]]
[[[7 5 4 8]
[3 1 2 8]]
[[5 4 2 6]
[7 7 8 2]]
[[8 3 8 2]
[3 5 2 1]]]
[[[3 6 5 3]
[5 6 4 5]]
[[4 4 7 7]
[1 3 4 1]]
[[6 5 1 6]
[3 3 7 1]]]
[[[8 2 1 7]
[1 2 3 5]]
[[3 2 6 5]
[4 1 2 1]]
[[2 3 1 2]
[8 6 1 7]]]]
可以总结出以下几点:
1.有多少层[]就是几维数据
2.从3维开始,数据分块显示:每一维数据看作一块,块和块之间有空格分开显示,空格可不是代表此处的数据为空,只是分割排版显示作用。比如,3维数据里面,每一张表格之间有一行的空格;四维数据里面,包含的每个三维数据块之间也有空格分开,而且三维的内部仍然遵循这个规律。