1. 单级索引
1.1 loc方法、iloc方法、[ ]操作符
1.1.1 loc方法
单行索引
多行索引
单列索引
多列索引
联合索引
函数式索引
布尔索引
1.1.2 iloc方法
单行索引
多行索引
单列索引
多列索引
混合索引
函数式索引
1.1.3.a Series的[ ]操作
单元素索引
多行索引
函数式索引
布尔索引
1.1.3.b DataFrame的[ ]操作
单行索引
获得某一个元素
多行索引
单列索引
多列索引
函数式索引
布尔索引
1.2 布尔索引
1.2.1 利用布尔符号
loc和[]中相应位置都能使用布尔列表选择
1.2.2 isin方法
等价于
1.3 快速标量索引
当只需要取一个元素时,at和iat方法能够提供更快的实现
1.4 区间索引
interval_range方法
利用cut将数值列转为区间元素的分类变量
区间索引的选取
如果想要选取某个区间,先要把分类变量转为区间变量,再使用overlap方法
2. 多级索引
2.1 创建多级索引
2.1.1 通过from_tuple或from_arrays
直接创建元组
利用zip创建元组
通过Array创建
2.1.2 通过from_product
2.1.3 set_index方法
2.2 多层索引切片
2.2.1 一般切片
2.2.2 第一类特殊情况:由元组构成列表
2.2.3 第二类特殊情况:由列表构成元组
2.3 多层索引中的slice对象
2.4 索引层的交换
2.4.1 swaplevel方法(两层交换)
2.4.2 reorder_levels方法(多层交换)
3. 索引设定
3.1 index_col参数
3.2 reindex和reindex_like
可以选择缺失值的填充方法:fill_value和method(bfill/ffill/nearest),其中method参数必须索引单调
reindex_like的作用为生成一个横纵索引完全与参数列表一致的DataFrame,数据使用被调用的表
如果df_temp单调还可以使用method参数
3.3 set_index和reset_index
3.3.1 set_index方法
利用append参数可以将当前索引维持不变
使用与表长相同的列作为索引(需要先转化为Series,否则报错)
可以直接添加多级索引
3.3.2 reset_index方法
用level参数指定哪一层被reset,用col_level参数指定set到哪一层
3.4 rename_axis和rename
3.4.1 rename_axis方法
rename_axis是针对多级索引的方法,作用是修改某一层的索引名,而不是索引标签
3.4.2 rename方法
rename方法用于修改列或者行索引标签,而不是索引名
4. 常用索引型函数
4.1 where函数
当对条件为False的单元进行填充
通过这种方法筛选结果和[ ]操作符的结果完全一致
第一个参数为布尔条件,第二个参数为填充值
4.2 mask函数
mask函数与where功能上相反,其余完全一致,即对条件为True的单元进行填充
4.3 query函数
query函数中的布尔表达式中,下面的符号都是合法的:行列索引名、字符串、and/not/or/&/|/~/not in/in/==/!=、四则运算符
5. 重复元素处理
5.1 duplicated方法
该方法返回了是否重复的布尔列表
可选参数keep默认为first,即首次出现设为不重复,若为last,则最后一次设为不重复,若为False,则所有重复项为True
5.2 drop_duplicates方法
剔除重复项
参数与duplicate函数类似
在传入多列时等价于将多列共同视作一个多级索引,比较重复项
6. sample抽样函数
n为样本量
frac为抽样比
replace为是否放回
axis为抽样维度,默认为0,即抽行
weights为样本权重,自动归一化
以某一列为权重
7. 问题与练习
7.1 问题
【问题一】 如何更改列或行的顺序?如何交换奇偶行(列)的顺序?
使用iloc函数;利用切片[0::2][1::2]
【问题二】 如果要选出DataFrame的某个子集,请给出尽可能多的方法实现。
loc、iloc和 [ ]
【问题三】 query函数比其他索引方法的速度更慢吗?在什么场合使用什么索引最高效?
不;与数据库结合时用最高效
【问题四】 单级索引能使用Slice对象吗?能的话怎么使用,请给出一个例子。
能; df.loc[idx['1103':],:]
【问题五】 如何快速找出某一列的缺失值所在索引?
#先构建一个有缺失值的数据表
data=pd.DataFrame({'name':['Kite','Lily','Hanmei','Danny','Bob'],'English':[92,78,np.nan,23,82],'Math':[69,87,91,np.nan,90],'Chinese':[np.nan,78,96,np.nan,75]})
print(data)
#缺失值为"NaN"
data.query('(Chinese in ["NaN"])').index
#可见结果是0,3
【问题六】 索引设定中的所有方法分别适用于哪些场合?怎么直接把某个DataFrame的索引换成任意给定同长度的索引?
适用场合见上文
df.set_index(pd.Series(np.random.rand(df.shape[0]))).head()
【问题七】 多级索引有什么适用场合?
存在多个条件时
【问题八】 什么时候需要重复元素处理?
考虑不同类比元素影响时
7.2 练习
【练习一】 现有一份关于UFO的数据集,请解决下列问题:
(a)在所有被观测时间超过60s的时间中,哪个形状最多?
(b)对经纬度进行划分:-180°至180°以30°为一个划分,-90°至90°以18°为一个划分,请问哪个区域中报告的UFO事件数量最多?
【练习二】 现有一份关于口袋妖怪的数据集,请解决下列问题:
(a)双属性的Pokemon占总体比例的多少?
(b)在所有种族值(Total)不小于580的Pokemon中,非神兽(Legendary=False)的比例为多少?
(c)在第一属性为格斗系(Fighting)的Pokemon中,物攻排名前三高的是哪些?
(d)请问六项种族指标(HP、物攻、特攻、物防、特防、速度)极差的均值最大的是哪个属性(只考虑第一属性,且均值是对属性而言)?
(e)哪个属性(只考虑第一属性)的神兽比例最高?该属性神兽的种族值也是最高的吗?
参考文章: Pandas教程.