MLP多层感知机梯度推导与反向传播
1.MLP梯度推导
2.MLP链式法则
3.MLP反向传播
1.MLP梯度推导
单输出感知器模型:

运算法则:
输入X乘以权重W得到y,再通过激活函数得到输出(O)。在这里,激活函数是sigmoid函数。
E是loss函数值,这里是输出值(output)与真实值(target)的欧式距离。
E的大小是评价感知器模型好坏的指标之一,w权重是描述这个感知器模型的参数,通过计算E来优化感知器模型,即优化w的值。
表示第I层,第j个输入链接第k个输出的权值w。以下先对一个权重(值)w求得感知器模型的梯度。