MLP多层感知机梯度推导与反向传播

MLP多层感知机梯度推导与反向传播

1.MLP梯度推导

2.MLP链式法则

3.MLP反向传播

1.MLP梯度推导

单输出感知器模型:

图1

运算法则:

输入X乘以权重W得到y,再通过激活函数得到输出(O)。在这里,激活函数是sigmoid函数。

E是loss函数值,这里是输出值(output)与真实值(target)的欧式距离。

 

E的大小是评价感知器模型好坏的指标之一,w权重是描述这个感知器模型的参数,通过计算E来优化感知器模型,即优化w的值。

表示第I层,第j个输入链接第k个输出的权值w。以下先对一个权重(值)w求得感知器模型的梯度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值