
pytorch
小白827
不要懒惰
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
pytorch中批量归一化BatchNorm1d和BatchNorm2d函数
class torch.nn.BatchNorm1d(num_features, eps=1e-05, momentum=0.1, affine=True) [source]对小批量(mini-batch)的2d或3d输入进行批标准化(Batch Normalization)操作在每一个小批量(mini-batch)数据中,计算输入各个维度的均值和标准差。gamma与beta是可学习的大小...原创 2019-12-24 16:05:42 · 28277 阅读 · 0 评论 -
pytorch函数AdaptiveMaxPool2d
class torch.nn.AdaptiveMaxPool2d(output_size, return_indices=False)对输入信号,提供2维的自适应最大池化操作 对于任何输入大小的输入,可以将输出尺寸指定为H*W,但是输入和输出特征的数目不会变化。可以用来实现全局平均最大池化层output_size=1参数:output_size: 输出信号的尺寸,可以用(H,W)表示HW...原创 2019-12-24 15:15:20 · 12260 阅读 · 0 评论 -
pytorch中激活函数ReLU
nn.ReLU(inplace=True)Parametersinplace – can optionally do the operation in-place. Default: FalseReLU(x)=max(0,x)参数inplace=True:inplace为True,将会改变输入的数据 ,否则不会改变原输入,只会产生新的输出注: 产生的计算结果不会有影响。利用in-pl...原创 2019-12-23 11:55:19 · 3367 阅读 · 0 评论 -
pytorch中池化层MaxPool2d函数
对于输入信号的输入通道,提供2维最大池化(max pooling)操作class torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)参数kernel_size,stride, padding,dilation数据类型: 可以是一个i...原创 2019-12-21 18:11:39 · 23077 阅读 · 0 评论 -
pytorch中卷积层Conv2d函数
pytorch中卷积层Conv2d函数:torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')二维卷积层, 输入的尺度是(N, C_in,H,W),输出尺度(N,C_out,H_out,...原创 2019-12-21 12:02:21 · 1529 阅读 · 0 评论 -
pytorch中Module模块中named_parameters函数
函数named_parameters(),返回各层中参数名称和数据class MLP(nn.Module): def __init__(self): super(MLP, self).__init__() self.hidden = nn.Sequential( nn.Linear(256,64), nn.R...原创 2019-12-20 13:18:06 · 6754 阅读 · 0 评论 -
pytorch:Kaggle房价预测
#-*- coding:utf-8 -*-import numpy as npimport pandas as pdimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom IPython import displayimport sysimport matplotlib.pyplot as plt...原创 2019-12-19 16:53:10 · 381 阅读 · 0 评论 -
pytorch中DataLoader函数
torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, num_workers=0, collate_fn=<function default_collate>, pin_memory=False, drop_last=False)数据加载器。组合数据集和采样器,并在数据集上提供...原创 2019-12-19 16:39:29 · 4677 阅读 · 2 评论 -
pytorch中TensorDataset函数
torch.utils.data.TensorDataset(data_tensor, target_tensor)包装数据和目标张量的数据集。通过沿着第一个维度索引两个张量来恢复每个样本。参数:data_tensor (Tensor) - 包含样本数据target_tensor (Tensor) - 包含样本目标(标签)class TensorDataset(Dataset):...原创 2019-12-19 16:14:19 · 13067 阅读 · 0 评论 -
线性回归
torch.mean(tensor)torch.index_selectt.zeros(1000,1)t.normal(t.zeros(1000,1), 0.01).reshape(labels.shape)indices = list(range(num_examples))random.shuffle(indices)t.index_select(feature,0,j)labe...原创 2019-12-18 10:31:32 · 141 阅读 · 0 评论 -
pytorch中如何生成随机数
1、torch.randtorch.rand(*sizes, out=None)->Tensor生成一个张量,包含从区间[0,1)的均匀分布中抽取一组随机数,形状由可变参数sizes定义参数:sizes(int…) 整数序列,定义了输出形状out(Tensor,optinal) 结果张量import torchtorch.rand(4)tensor([0.2983, ...原创 2019-12-17 15:11:46 · 7808 阅读 · 0 评论