具有注意力能力的卷积神经网络“CBAM”

本文介绍了一种名为CBAM的卷积注意力模块,它结合通道和空间注意力,增强了CNN的识别能力和鲁棒性。CBAM通过全局平均池化和最大池化来选择通道和空间信息,实验表明,该模块在ImageNet分类、物体检测等任务中提升了模型性能,并通过可视化验证了其注意力集中效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简介

注意力机制是人类视觉系统中的重要部分,人在识别物体时会自动的将注意力集中在所要识别的物体上。笔者个人认为这种注意力机制可以帮助人在识别物体时减少背景信息带来的影响,从而使人的识别能力更不易受其他干扰的影响,因此如果能使卷积神经网络也具有这种能力,就能在提高模型的识别能力的同时提高模型的鲁棒性。在本文中,作者通过同时利用特征图的通道信息及空间信息设计了一种具有注意力能力的卷积模块,使模型能够把“注意力”放在更有用的信息上,此外该模块可以应用各种卷积神经网络架构中,能够对各种计算机视觉任务带来一定的提升。

图1 CBAM示意图

二、网络设计

1、注意力卷积模块

文中提出的注意力模块主要包含两部分,第一部分为通道注意力图,它能够对通道进行选择,另一部分为空间注意力图,它能够选取图像空间中所需注意的区域,对于给定的特征图,经过

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值