一、简介
注意力机制是人类视觉系统中的重要部分,人在识别物体时会自动的将注意力集中在所要识别的物体上。笔者个人认为这种注意力机制可以帮助人在识别物体时减少背景信息带来的影响,从而使人的识别能力更不易受其他干扰的影响,因此如果能使卷积神经网络也具有这种能力,就能在提高模型的识别能力的同时提高模型的鲁棒性。在本文中,作者通过同时利用特征图的通道信息及空间信息设计了一种具有注意力能力的卷积模块,使模型能够把“注意力”放在更有用的信息上,此外该模块可以应用各种卷积神经网络架构中,能够对各种计算机视觉任务带来一定的提升。

二、网络设计
1、注意力卷积模块
文中提出的注意力模块主要包含两部分,第一部分为通道注意力图,它能够对通道进行选择,另一部分为空间注意力图
,它能够选取图像空间中所需注意的区域,对于给定的特征图,经过