相控阵天线(三):直线阵列天线低副瓣综合(切比雪夫、泰勒分布、SinZ-Z和Villeneuve分布、含python代码)

本文详细介绍了阵列天线综合方法,包括切比雪夫、泰勒、高斯、二项式、SinZ-Z和Villeneuve分布。切比雪夫阵列以其等副瓣电平和最窄主瓣闻名,泰勒阵列则在特定区域内保持副瓣电平接近。文章通过代码示例展示了不同分布的馈电分布和天线方向图,并探讨了它们的口径效率。此外,还提供了Python代码实现切比雪夫分布的天线辐射模拟。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

阵列天线综合方法概述

直线阵列天线的综合是在预先给定辐射特性(如方向图形状、主瓣宽度、副瓣电平、方向性系数)的情况下,综合出阵列单元数、间距、激励幅度和相位。
其中最常见的为给定方向图主瓣宽度、副瓣电平的要求进行综合,方向图的其它细节不苛求。这类综合方法最著名的是道尔夫—切比雪夫综合法,泰勒综合法、高斯分布、二项式分布、SinZ-Z和Villeneuve分布等。
切比雪夫阵列的主要特点包括:等副瓣电平;在相同副瓣电平和相同阵列长度下主瓣最窄。泰勒阵列分布的特点是:靠近主瓣某个区域内的副瓣电平接近相等,随后单调地减小,有利于提高天线方向性。
二项式分布是没有副瓣电平的,高斯分布比较接近与二项式分布,SinZ-Z分布主副瓣电平比较高,其他副瓣电平较低,Villeneuve分布的副瓣电平逐渐降低。

泰勒分布的口径效率随着副瓣电平的降低而降低,切比雪夫的口径效率随着副瓣电平的降低先升高后降低,同时泰勒分布的口径效率与阵元数量关系不大,比较稳定,切比雪夫分布的口径效率与阵元数量有关。

切比雪夫阵列综合

切比雪夫阵列的主要特点包括:每个副瓣电平是相等的;在相同副瓣电平和相同阵列长度下主瓣最窄;单元激励的分布公式如下所示:
在这里插入图片描述
32阵元的切比雪夫阵,副瓣电平分别为20、24、30、40dB,阵列的馈电分布如下所示:
在这里插入图片描述
32阵元的切比雪夫阵,副瓣电平分别为20、24、30、40dB对应的天线方向图如下所示:
在这里插入图片描述

泰勒阵列综合

泰勒阵列分布的特点是:靠近主瓣某个区域内的副瓣电平接近相等,随后单调地减小,有利于提高天线方向性。单元激励的分布公式如下所示:
在这里插入图片描述
32阵元的泰勒分布阵,副瓣电平分别为20、24、30、40dB,阵列的馈电分布如下所示:
在这里插入图片描述
32阵元的泰勒分布阵,副瓣电平分别为20、24、30、40dB对应的天线方向图如下所示:
在这里插入图片描述

高斯分布、二项式分布、SinZ-Z和Villeneuve分布

高斯分布的馈电分布公式如下所示:
在这里插入图片描述
二项式分布的馈电分布的公式如下所示:
在这里插入图片描述
SinZ-Z的馈电分布的公式如下所示:
在这里插入图片描述
Villeneuve馈电分布的公式如下所示:
在这里插入图片描述
16阵元的高斯分布、二项式分布、SinZ-Z和Villeneuve的馈电幅度如下所示:
在这里插入图片描述
16阵元的高斯分布、二项式分布、SinZ-Z和Villeneuve的阵列方向图如下所示:
在这里插入图片描述
综上所示,其中二项式分布是没有副瓣电平的,高斯分布比较接近与二项式分布,SinZ-Z分布主副瓣电平比较高,其他副瓣电平较低,Villeneuve分布的副瓣电平逐渐降低。

切比雪夫、泰勒和Villeneuve综合比较

32阵元副瓣电平30dB的切比雪夫、泰勒和Villeneuve馈电分布如下所示:
在这里插入图片描述
32阵元副瓣电平30dB的切比雪夫、泰勒和Villeneuve阵列方向图如下所示:
在这里插入图片描述

切比雪夫、泰勒和Villeneuve分布的口径效率比较

阵元规模32阵元,切比雪夫、泰勒和Villeneuve分布在不同副瓣电平下的口径效率如下所示:
在这里插入图片描述
副瓣电平24dB,切比雪夫、泰勒和Villeneuve分布在不同阵元规模下的口径效率如下所示:
在这里插入图片描述
副瓣电平32dB,切比雪夫、泰勒和Villeneuve分布在不同阵元规模下的口径效率如下所示:
在这里插入图片描述
泰勒分布的口径效率随着副瓣电平的降低而降低,切比雪夫的口径效率随着副瓣电平的降低先升高后降低,同时泰勒分布的口径效率与阵元数量关系不大,比较稳定,切比雪夫分布的口径效率与阵元数量有关。

切比雪夫综合python代码示例

import math
import cmath
import matplotlib.pyplot as plt
import numpy as np
class Pattern:
    def Cheby(self,N,RdB,n_round=4):
        M=int(N)
        R0dB=RdB
        clist=[]
        list=[]
        R0=10**(R0dB/20)
        x0=0.5*((R0+(R0**2-1)**0.5)**(1/(M-1))+(R0-(R0**2-1)**0.5)**(1/(M-1)))
        if M%2==0:
            m=int(M/2)
            for n in range(1,m+1):
                a=0
                for q in range(n,m+1):
                    a=a+(-1)**(m-q)*x0**(2*q-1)*np.math.factorial(q+m-2)*(
                            2*m-1)/np.math.factorial(q-n)/np.math.factorial(
                        q+n-1)/np.math.factorial(m-q)
                clist.append(a)
        else:
            m=int(M/2)
            for n in range(1,m+2):
                a=0
                for q in range(n,m+2):
                    a=a+(-1)**(m-q+1)*x0**(2*q-2)*np.math.factorial(q+m-2)*(
                            2*m)/np.math.factorial(q-n)/np.math.factorial(
                        q+n-2)/np.math.factorial(m-q+1)
                clist.append(a)
        clist_max=max(clist)
        for i in range(0,len(clist)):
            clist[i]=round(clist[i]/clist_max,n_round)
        if M%2==0:
            for j in range(0,len(clist)):
                list.append(clist[len(clist)-j-1])
        else:
            for j in range(0,len(clist)-1):
                list.append(clist[len(clist)-j-1])
        return (list+clist)
    def radiation(self):
        n_cell = 16
        f = 3
        position = np.arange(0,n_cell)*50
        power = self.Cheby(n_cell,24)
        phase = np.zeros(n_cell)
        data_x = np.arange(-89,90,1)
        data_y = np.ones(len(data_x))
        mini_a = 1e-5
        k = 2 * math.pi * f / 300
        data_new = []
        for i in range(0, len(data_x)):
            a = complex(0, 0)
            k_d = k * math.sin(data_x[i] * math.pi / 180)
            for j in range(0, n_cell):
                a = a + power[j] * data_y[i] * cmath.exp(complex(0,(phase[j] * math.pi / 180 + k_d * position[j])))
            data_new.append(20*math.log10(abs(a)+mini_a))
        plt.plot(data_x, data_new)
        plt.show()

def main(argv=None):
    pattern = Pattern()
    pattern.radiation()

if __name__ == '__main__':
   main( )

代码运行截图如下所示:
在这里插入图片描述

### 回答1: PCAAD是一种用于阵列天线仿真的方法。阵列天线是由一组天线元件组成的,可以以一定的方式排列,以实现对信号的收发增强。PCAAD是Pattern Coverage Analysis and Design(模式覆盖分析与设计)的缩写,是一种用于阵列天线仿真的数学模型。 PCAAD方法可以通过计算分析阵列天线的覆盖图案,来评估优化天线设计。在仿真过程中,首先确定天线阵列的结构,包括天线元件的类型数量、元件之间的距离排列方式等。然后,利用数学模型来计算天线阵列的辐射模式电磁参数,如增益、波束方向、波束宽度等。通过比较不同设计方案的仿真结果,可以选择最优的设计方案。 PCAAD方法在阵列天线的设计中具有重要的应用价值。首先,通过仿真可以快速评估不同设计方案的性能差异,从而避免了实际制作测试的成本时间消耗。其次,在优化阵列天线的性能时,可以通过调整天线元件之间的距离排列方式等参数,以实现更好的信号覆盖接收性能。最后,PCAAD方法还可以辅助解决阵列天线设计中的其他问题,如信号干扰波束形成等。 总之,PCAAD是一种用于阵列天线仿真的方法,通过分析优化阵列天线的覆盖图案,可以辅助设计优化阵列天线的性能。这种方法在无线通信、雷达系统卫星通信等领域具有重要的应用。 ### 回答2: PCAAD(Planar Concentric Array Antenna Design)是一种阵列天线设计的方法。阵列天线是由多个天线元件组成的,可以增加天线的增益指向性。PCAAD仿真是指利用计算机软件来模拟分析阵列天线的性能。 在PCAAD仿真中,首先需要确定阵列天线的几何结构,包括天线元件的数量排列方式。然后,利用电磁场分析软件,如ANSYS、CST等,对阵列天线进行仿真。在仿真过程中,可以通过调整天线元件的位置相位来改变天线的指向性波束宽度。还可以通过改变天线元件的特性参数来调节阵列天线的频率响应增益。 通过PCAAD仿真,我们可以评估阵列天线在不同工作频段下的性能。例如,可以研究阵列天线的辐射模式、波束宽度副瓣水平等参数。此外,还可以分析天线在不同天线元件故障情况下的性能损失,从而提高阵列天线的可靠性稳定性。 在实际应用中,PCAAD仿真可以帮助工程师设计优化阵列天线,以满足特定的通信要求。例如,在无线通信系统中,可以利用PCAAD仿真来确定最佳的天线排列方式天线元件配置,以实现更好的信号覆盖抗干扰性能。 总之,PCAAD阵列天线仿真是一种有效的工具,可以帮助我们理解优化阵列天线的性能。通过仿真分析,可以提高阵列天线的设计效率性能,并为实际应用提供参考指导。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值