本文将运用傅里叶变换来解决数学物理方法中的热流问题:
假设我们有一个圆环,初始温度分布为 f(x)f(x)f(x),求任意时刻圆环各处的温度情况
求解过程如下
设 U(x,t)U(x,t)U(x,t) 为圆环在 xxx 位置,ttt 时刻时的温度
显然 U(x,0)=f(x)U(x,0) = f(x)U(x,0)=f(x)
为了便于计算,我们设绕圆环一周的总长度为 111,则我们有:f(x+1)=f(x)f(x+1) = f(x)f(x+1)=f(x),U(x+1,t)=U(x,t)U(x+1,t) = U(x,t)U(x+1,t)=U(x,t),即一圈后回到原来的位置
由于函数 UUU 是周期函数,因此我们可以写出它的傅里叶级数表达式:
U(x)=∑k=−∞∞Cke2πikxU(x) = \sum_{k=-\infty}^\infty C_k e^{2\pi ikx}U(x)=k=−∞∑∞Cke2πikx
由于函数 UUU 是 xxx 与 ttt 的函数,而 e2πikxe^{2\pi ikx}e2πikx 部分展现了其周期性,因此,系数 CkC_kCk 应当是 ttt 的函数,且与 xxx 无关(否则将失去周期性)。于是我们得到:
U(x,t)=∑k=−∞∞Ck(t)e2πikx(1)U(x,t) = \sum_{k=-\infty}^\infty C_k(t) e^{2\pi ikx}\tag1U(x,t)=k=−∞∑∞Ck(t)e2πikx(1)
由数学物理方法知道,一维热方程(又称扩散方程):
Ut=aUxx U_t = a U_{xx}Ut=aUxx
其中,aaa 是由圆环的环境、材质等决定的常数,为了便于计算,我们将其设为 12\frac{1}{2}21,从而得到(注意此处的下标 ttt 及 xxxxxx 表示求导)
Ut=12Uxx(2) U_t = \frac{1}{2} U_{xx}\tag2Ut=21Uxx(2)
将 (1)(1)(1) 式代入 (2)(2)(2) 式,我们有
Ut=∑k=−∞∞Ck′(t)e2πikxU_t =\sum_{k=-\infty}^{\infty}C_k^\prime(t) e^{2\pi ikx}Ut=k=−∞∑∞Ck′(t)e2πikx
Uxx=∑k=−∞∞Ck(t)(−4π2k2)e2πikxU_{xx} = \sum_{k=-\infty}^{\infty}C_k(t) (-4\pi^2k^2)e^{2\pi ikx}Uxx=k=−∞∑∞Ck(t)(−4π2k2)e2πikx
⟹ ∑k=−∞∞Ck′(t)e2πikx=∑k=−∞∞Ck(t)(−2π2k2)e2πikx\implies \sum_{k=-\infty}^{\infty}C_k^\prime(t) e^{2\pi ikx} = \sum_{k=-\infty}^{\infty}C_k(t) (-2\pi^2k^2)e^{2\pi ikx}⟹k=−∞∑∞Ck′(t)e2πikx=k=−∞∑∞Ck(t)(−2π2k2)e2πikx
由于 {e2πikx}\{e^{2\pi ikx}\}{e2πikx} 的正交性,等式左右两边的系数必然一一对应,于是我们有:
Ck′(t)=−2π2k2Ck(t)C_k^\prime(t) = -2\pi^2k^2 C_k(t)Ck′(t)=−2π2k2Ck(t)
解该常微分方程,有:
d(Ck)dt=−2π2k2Ck ⟹ d(Ck)Ck=−2π2k2dt ⟹ ∫1Ckd(Ck)=∫−2π2k2dt ⟹ lnCk=a−2π2k2t,a为常数 ⟹ Ck(t)=Ck(0)e−2π2k2t(3)\begin{aligned} &\frac{d(C_k)}{dt} =-2\pi ^2k^2 C_k \\ \implies &\frac{d(C_k)}{C_k} = -2\pi ^2k^2 dt \\ \implies &\int \frac{1}{C_k}d(C_k) = \int -2\pi ^2k^2 dt \\ \implies &\ln C_k = a -2\pi ^2k^2t,a为常数\\ \implies &C_k(t) = C_k(0)e^{ -2\pi ^2k^2t}\tag3 \end{aligned}⟹⟹⟹⟹dtd(Ck)=−2π2k2CkCkd(Ck)=−2π2k2dt∫Ck1d(Ck)=∫−2π2k2dtlnCk=a−2π2k2t,a为常数Ck(t)=Ck(0)e−2π2k2t(3)
因而进一步地,我们需要计算 Ck(0)C_k(0)Ck(0)
当 t=0t=0t=0 时,根据 (1)(1)(1) 式,有
U(x,0)=f(x)=∑k=−∞∞Ck(0)e2πikxU(x,0) = f(x) = \sum_{k=-\infty}^\infty C_k(0) e^{2\pi ikx}U(x,0)=f(x)=k=−∞∑∞Ck(0)e2πikx
考虑到 f(x)f(x)f(x) 也是周期函数,因此可以写出其傅里叶级数:
f(x)=∑k=−∞∞f^(k)e2πikxf(x) = \sum_{k=-\infty}^\infty \hat{f}(k) e^{2\pi ikx}f(x)=k=−∞∑∞f^(k)e2πikx
对比两式可知,Ck(0)C_k(0)Ck(0) 可以看作 f(x)f(x)f(x) 傅里叶展级数开式的第 kkk 项系数 f^(k)\hat{f}(k)f^(k)
根据这个结论,以及 (3)(3)(3) 式,我们有:
U(x,t)=∑k=−∞∞f^(k)e−2π2k2te2πikxU(x,t) = \sum_{k=-\infty}^\infty \hat{f}(k) e^{-2\pi ^2k^2t}e^{2\pi ikx}U(x,t)=k=−∞∑∞f^(k)e−2π2k2te2πikx
从这个式中,我们可以知道:当 t→∞t\to \inftyt→∞,U(x,t)→0U(x,t)\to 0U(x,t)→0
这是本题的解的第一种表达方式
我们继续将 f^(k)\hat{f}(k)f^(k) 用 f(x)f(x)f(x) 表示,此处,为了区分于 U(x,t)U(x,t)U(x,t) 中的 (x)(x)(x) 变量,我们将 f(x)f(x)f(x) 改写为 f(y)f(y)f(y),从而有:
f^(k)=∫01e−2πikyf(y)dy\hat{f}(k) = \int_0^1 e^{-2\pi iky} f(y)dyf^(k)=∫01e−2πikyf(y)dy
因此,我们可以最终写出 U(x,t)U(x,t)U(x,t) 的表达式:
U(x,t)=∑k=−∞∞∫01e−2π2k2te2πikxe−2πikyf(y)dy=∫01∑k=−∞∞(e2πik(x−y)e−2π2k2t)f(y)dy(4)\begin{aligned} U(x,t) &= \sum_{k=-\infty}^\infty \int_0^1e^{-2\pi ^2k^2t}e^{2\pi ikx}e^{-2\pi iky}f(y)dy\\ &=\int_0^1 \sum_{k=-\infty}^\infty (e^{2\pi ik(x-y)}e^{-2\pi ^2k^2t})f(y)dy\tag4 \end{aligned}U(x,t)=k=−∞∑∞∫01e−2π2k2te2πikxe−2πikyf(y)dy=∫01k=−∞∑∞(e2πik(x−y)e−2π2k2t)f(y)dy(4)
这是本题的解的第二种表达方式
此外,通过 (4)(4)(4) 式,我们可以引入卷积的概念
令 g(x,t)=∑k=−∞∞e2πikxe−2π2k2tg(x,t) = \sum_{k=-\infty}^\infty e^{2\pi ikx}e^{-2\pi ^2k^2t}g(x,t)=∑k=−∞∞e2πikxe−2π2k2t,那么 U(x,t)U(x,t)U(x,t) 可以表示为:
U(x,t)=∫01g(x−y,t)f(y)dyU(x,t) = \int_0^1g(x-y,t)f(y)dyU(x,t)=∫01g(x−y,t)f(y)dy
这个式子的含义是:U(x,t)U(x,t)U(x,t) 是 f(x)f(x)f(x) 与 g(x,t)g(x,t)g(x,t) 的卷积
此处,g(x,t)g(x,t)g(x,t) 被称为热核函数(也称热方程格林函数或热方程基本解),在其他数学物理方法的题目中,还会看到许许多多不同的“核”函数,他们同样会以卷积的形式构成类似的解