1、安装ubuntu (安装系统时,建议不要连接网络。否则容易崩溃)
/boot 200-500M 固态
/交换空间 内存容量的1到2倍 固态
/根目录 剩余固态空间
/home 机械硬盘空间
开机后,sudo apt install vim 安装vim
系统设置-》软件与更新-》使用中科大的源-》关闭确认更新
终端中
cd /etc/apt/
sudo cp sources.list sources.list.bak
sudo vim sources.list
更新Ubuntu16.04源
终端输入
cd /etc/apt/
sudo cp sources.list sources.list.bak
sudo vi sources.list
把下面的这些源添加到source.list中:
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial main restricted universemultiverse
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-security main restricted universemultiverse
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-updates main restricted universemultiverse
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-proposed main restricted universemultiverse
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-backports main restricteduniverse multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial main restricted universemultiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-security main restricteduniverse multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-updates main restricteduniverse multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-proposed main restricteduniverse multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-backports main restricteduniverse multiverse
最后更新源和更新已安装的包:
terminal输入
sudo apt-get update
sudo apt-get upgrade
2、安装Nvidia显卡驱动
屏蔽系统集成的显卡驱动nouveau
sudo vim /etc/modprobe.d/blacklist.conf
在文件最后添加下面几行:
blacklist vgafb16
blacklist nouveau
blacklist rivafb
blacklist rivatv
blacklist nvidiafb
保存文档后,更新内核
sudo update-initramfs -u
重启系统,查看nouveau是否禁用:
lsmod | grep nouveau
安装驱动
sudo apt-get install nvidia-384
sudo apt-get install mesa-common-dev
sudo apt-get install freelut3-dev
重启之后,终端输入nvidia-smi得到下图:
说明nvidia驱动安装成功
3、安装cuda以及cudnn
安装cuda
sh cuda_8.0.44_linux -override
安装启动后,一直按空格到最后,输入accept,按enter键接受条款
输入n不安装nvidia驱动,因为之前已经安装过
输入y确认安装cuda8.0工具
回车确定cuda默认安装路径:/usr/local/cuda-8.0
输入y,采用sudo权限安装
输入y,安装指向/usr/local/cuda的符号链接
输入y确认安装CUDA8.0 Samples,便于后面测试
回车确认CUDA8.0 Samples默认安装路径:/home/image(image是我的用户名)
安装完成后显示下图
安装cudnn v6.0
下载 cudnn-8.0-linux-x64-v6.0.tgz
tar cudnn-8.0-linux-x64-v6.0.tgz
解压在下载目录下产生一个 cuda 目录
cd cuda/include/
sudo cp cudnn.h /usr/local/cuda/include/ 复制头文件
cd ../lib64 打开 lib64 目录
sudo cp lib* /usr/local/cuda/lib64/ 复制库文件
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*给所有
用户增加这些文件的读权限
建立软链接
终端输入
cd /usr/local/cuda/lib64/
sudo rm -rf libcudnn.so libcudnn.so.6
sudo ln -s libcudnn.so.6.0.21 libcudnn.so.6
sudo ln -s libcudnn.so.6 libcudnn.so
设置环境变量,终端输入sudo gedit /etc/profile
在末尾加入
PATH=/usr/local/cuda/bin:$PATH
export PATH
保存后,创建链接文件
sudo vim /etc/ld.so.conf.d/cuda.conf
按 a 进入插入模式,增加下面一行
/usr/local/cuda/lib64
按 esc 退出插入模式,按:wq 保存退出
最后在终端输入 sudo ldconfig 使链接生效
运行 cuda Samples,测试验证 cuda 安装成功
打开 CUDA 8.0 Samples 默认安装路径,终端输入
cd /home/image/NVIDIA_CUDA-8.0_Samples
sudo make all -j4 (4 核)
cd bin/x86_64/linux/release
./deviceQuery
得到以下显卡的信息获得通过,则是 cuda 安装成功。
4.安装Python依赖库
例如:sudo pip install numpy
Cython>=0.19.2
numpy>=1.7.1
scipy>=0.13.2
scikit-image>=0.9.3
matplotlib>=1.3.1
ipython>=3.0.0
h5py>=2.2.0
leveldb>=0.191
networkx>=1.8.1
nose>=1.3.0
pandas>=0.12.0
python-dateutil>=1.4,<2
protobuf>=2.5.0
python-gflags>=2.0
pyyaml>=3.10
Pillow>=2.3.0
six>=1.1.0
5.安装OpenCV
安装依赖库
sudo apt-get install build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
下载并解压Opencv2.4.13.zip
cd opencv-2.4.13
mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..
得到下图:
make -j4 需要几分钟(取决于CPU性能)
sudo make install -j8 等待一段时间
无报错,说明安装结束
添加路径
sudo gedit /etc/ld.so.conf.d/opencv.conf
加入/usr/local/lib
更新库目录 sudo ldconfig
sudo gedit /etc/bash.bashrc
最后一行加入:
export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig:$PKG_CONFIG_PATH
配置就完成了,测试一个程序
在 opencv/samples/c 中 执行./build_all.sh
编译完成后,执行./facedetect --cascade="/usr/local/share/OpenCV/haarcascades/haarcascade_frontalface_alt.xml" --scale=1.5 lena.jpg
6.安装BLAS
sudo apt-get install libatlas-base-dev
7、caffe配置
安装protobuf
手动安装2.6.1 版本:下载链接, https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz
tar -zxvf protobuf-2.6.1.tar.gz
cd protobuf-2.6.1/
./configure make
make check
sudo make install
检查是否安装成功,protoc --version
解决: 在/etc/ld.so.conf.d文件下, sudo gedit bprotobuf.conf 输入/usr/local/lib 保存退出,再 sudo ldconfig加载路径。 再检查protobuf版本:protoc --version
这样安装成功。
安装caffe其他依赖
sudo apt-get install libleveldb-dev libsnappy-dev libboost-all-dev libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev
配置caffe makefile.config
下载caffe git clone https://github.com/BVLC/caffe.git
进入caffe目录,cd caffe sudo cp Makefile.config.example Makefile.config # 备份配置文件 sudo gedit Makefile.config
修改编译文件 根据我自己的需求,修改了以下内容:
1)USE_CUDNN := 1 注销了'#'
2)关于OPENCV_VERSION := 3,如果装的是opencv3 ,则注销’#‘,如果是opencv2则 不需要注销。
3)这里取消注释: WITH_PYTHON_LAYER := 1
4)将以下的代码

修改为:INCLUDE_DIRS:=$(PYTHON_INCLUDE) /usr/local/include/usr/include/hdf5/serial/
LIBRARY_DIRS:=$(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linuxgnu /usr/lib/x86_64-linux-gnu/hdf5/serial
编译
make all -j4 可能会报错: pyconfig.h: No such file or directory

make test -j4

3)make runtest -j4 大约需要 5min


5)在python中import时会报错。
这时去protobuf文档中,在/python/google/protobuf下创建空文件夹compiler cd..

python
7 )为了能在任何目录下
python都能import caffe成功
sudo gedit ~/.bashrc export PYTHONPATH="/home/image/caffe-master/python:$PYTHONPATH"
8、安装tensorflow和keras
sudo pip install -U --pre tensorflow-gpu==1.4
sudo pip install -U --pre keras==2.0.10