Unbuntu16.04+caffe+tensorflow+keras+Opencv

本文详细介绍了在Ubuntu16.04上安装Nvidia显卡驱动、CUDA 8.0、CUDNN v6.0、TensorFlow GPU版和Keras的步骤。包括屏蔽nouveau驱动、安装依赖库、配置环境变量等关键操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、安装ubuntu (安装系统时,建议不要连接网络。否则容易崩溃) 

/boot 200-500M 固态

/交换空间 内存容量的1到2倍 固态

/根目录 剩余固态空间

/home   机械硬盘空间

开机后,sudo apt install vim 安装vim

系统设置-》软件与更新-》使用中科大的源-》关闭确认更新

终端

cd /etc/apt/
sudo cp sources.list sources.list.bak
sudo vim sources.list

更新Ubuntu16.04

终端输入
cd /etc/apt/
sudo cp sources.list sources.list.bak
sudo vi sources.list
把下面的这些源添加到source.list中:
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial main restricted universemultiverse
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-security main restricted universemultiverse
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-updates main restricted universemultiverse
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-proposed main restricted universemultiverse
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-backports main restricteduniverse multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial main restricted universemultiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-security main restricteduniverse multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-updates main restricteduniverse multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-proposed main restricteduniverse multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-backports main restricteduniverse multiverse
最后更新源和更新已安装的包
terminal
输入
sudo apt-get update
sudo apt-get upgrade

2、安装Nvidia显卡驱动

屏蔽系统集成的显卡驱动nouveau

sudo vim /etc/modprobe.d/blacklist.conf

在文件最后添加下面几行:

blacklist vgafb16

blacklist nouveau

blacklist rivafb

blacklist rivatv

blacklist nvidiafb

保存文档后,更新内核

sudo update-initramfs -u

重启系统,查看nouveau是否禁用:

lsmod | grep nouveau

安装驱动

sudo apt-get install nvidia-384

sudo apt-get install mesa-common-dev

sudo apt-get install freelut3-dev

重启之后,终端输入nvidia-smi得到下图:


说明nvidia驱动安装成功

3、安装cuda以及cudnn

安装cuda

这里安装已经下载的 cuda_8.0.44_linux.run

sh cuda_8.0.44_linux -override

安装启动后,一直按空格到最后,输入accept,按enter键接受条款

输入n不安装nvidia驱动,因为之前已经安装过

输入y确认安装cuda8.0工具

回车确定cuda默认安装路径:/usr/local/cuda-8.0

输入y,采用sudo权限安装

输入y,安装指向/usr/local/cuda的符号链接

输入y确认安装CUDA8.0 Samples,便于后面测试

回车确认CUDA8.0 Samples默认安装路径:/home/image(image是我的用户名)

安装完成后显示下图


安装cudnn v6.0

下载 cudnn-8.0-linux-x64-v6.0.tgz

tar cudnn-8.0-linux-x64-v6.0.tgz

解压在下载目录下产生一个 cuda 目录

cd cuda/include/

sudo cp cudnn.h /usr/local/cuda/include/ 复制头文件

cd ../lib64 打开 lib64 目录

sudo cp lib* /usr/local/cuda/lib64/ 复制库文件

sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*给所有

用户增加这些文件的读权限

建立软链接

终端输入

cd /usr/local/cuda/lib64/

sudo rm -rf libcudnn.so libcudnn.so.6

sudo ln -s libcudnn.so.6.0.21 libcudnn.so.6

sudo ln -s libcudnn.so.6 libcudnn.so

设置环境变量,终端输入sudo gedit /etc/profile

在末尾加入

PATH=/usr/local/cuda/bin:$PATH

export PATH

保存后,创建链接文件

sudo vim /etc/ld.so.conf.d/cuda.conf

按 a 进入插入模式,增加下面一行

/usr/local/cuda/lib64

按 esc 退出插入模式,按:wq 保存退出

最后在终端输入 sudo ldconfig 使链接生效

运行 cuda Samples,测试验证 cuda 安装成功

打开 CUDA 8.0 Samples 默认安装路径,终端输入

cd /home/image/NVIDIA_CUDA-8.0_Samples

sudo make all -j4 (4 核)

cd bin/x86_64/linux/release

./deviceQuery

得到以下显卡的信息获得通过,则是 cuda 安装成功。


4.安装Python依赖库

例如:sudo pip install numpy

Cython>=0.19.2

numpy>=1.7.1

scipy>=0.13.2

scikit-image>=0.9.3

matplotlib>=1.3.1

ipython>=3.0.0

h5py>=2.2.0

leveldb>=0.191

networkx>=1.8.1

nose>=1.3.0

pandas>=0.12.0

python-dateutil>=1.4,<2

protobuf>=2.5.0

python-gflags>=2.0

pyyaml>=3.10

Pillow>=2.3.0

six>=1.1.0

5.安装OpenCV

安装依赖库

sudo apt-get install build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev

下载并解压Opencv2.4.13.zip

cd opencv-2.4.13

mkdir build

cd build

cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..

得到下图:

make -j4 需要几分钟(取决于CPU性能)

sudo make install -j8 等待一段时间

无报错,说明安装结束

添加路径

sudo gedit /etc/ld.so.conf.d/opencv.conf

加入/usr/local/lib

更新库目录 sudo ldconfig

sudo gedit /etc/bash.bashrc

最后一行加入:

export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig:$PKG_CONFIG_PATH

配置就完成了,测试一个程序

在 opencv/samples/c 中 执行./build_all.sh

编译完成后,执行./facedetect --cascade="/usr/local/share/OpenCV/haarcascades/haarcascade_frontalface_alt.xml" --scale=1.5 lena.jpg

6.安装BLAS

sudo apt-get install libatlas-base-dev

7、caffe配置

安装protobuf

手动安装2.6.1 版本:下载链接, https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz  

tar -zxvf protobuf-2.6.1.tar.gz  

cd protobuf-2.6.1/  

./configure  make  

make check  

sudo make install 

检查是否安装成功,protoc --version 

在这里,有时会报错:这是由于protobuf的默认安装路径是/usr/local/lib,而/usr/local/lib不在ubuntu体系默认的LD_LIBRARY_PATH里,所以就找不到lib

解决: 在/etc/ld.so.conf.d文件下, sudo gedit bprotobuf.conf 输入/usr/local/lib  保存退出,再  sudo ldconfig加载路径。 再检查protobuf版本:protoc --version
 
这样安装成功。 

安装caffe其他依赖 

sudo apt-get install libleveldb-dev libsnappy-dev libboost-all-dev libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev  

配置caffe makefile.config 

下载caffe git clone https://github.com/BVLC/caffe.git

进入caffe目录,cd caffe  sudo cp Makefile.config.example Makefile.config # 备份配置文件  sudo gedit Makefile.config

修改编译文件 根据我自己的需求,修改了以下内容:

1)USE_CUDNN := 1 注销了'#' 

2)关于OPENCV_VERSION := 3,如果装的是opencv3 ,则注销’#‘,如果是opencv2则 不需要注销。 

3)这里取消注释:  WITH_PYTHON_LAYER := 1 

4)将以下的代码 


修改为:INCLUDE_DIRS:=$(PYTHON_INCLUDE) /usr/local/include/usr/include/hdf5/serial/

LIBRARY_DIRS:=$(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linuxgnu /usr/lib/x86_64-linux-gnu/hdf5/serial

编译 

1 )在 caffe目录下
make all -j4 可能会报错: pyconfig.h: No such file or directory  
将网上的 http://blog.csdn.net/qq_24574309/article/details/78187557中的直接粘贴到了 makefile.config中,直接替换了那部分,于是编译通过了

2 ) 继续
make test -j4 

3)make runtest -j4   大约需要 5min 

4)make pycaffe -j4 

5)在python中import时会报错。


这时去protobuf文档中,在/python/google/protobuf下创建空文件夹compiler cd.. 

再运行:python setup.py install 安装成功 
 
6) 再在 caffe/python下
python 
import caffe  没有报错,则成功
7 )为了能在任何目录下
python都能import caffe成功 
sudo gedit ~/.bashrc export PYTHONPATH="/home/image/caffe-master/python:$PYTHONPATH" 

8、安装tensorflow和keras

sudo pip install -U --pre tensorflow-gpu==1.4

sudo pip install -U --pre keras==2.0.10

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值