
学习笔记
好好学习_天天向上de
加油ヾ(◍°∇°◍)ノ゙
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
AIC(最小信息化准则)
AIC信息准则(即Akaike information criterion),是用来衡量统计模型拟合优良性的一个标准,是是由日本统计学家赤池弘次创立和发展的,因此也称为赤池信息量准则,它建立在熵的概念基础上,可以权衡所估计模型的复杂度和模型拟合数据的优良性。在一般情况下,AIC可以表示为:AIC=2k-2ln(L)其中:k是参数的数量,L是似然函数。假设条件是模型的误差服从独立正态分布。让n为观察...原创 2018-04-17 09:27:17 · 31242 阅读 · 4 评论 -
Scikit-Learn 与 TensorFlow 机器学习实用指南 读书笔记(一)
一、下载数据下载并解压数据:housing.tgz数据地址:https://github.com/ageron/handson-ml/tree/master/datasets/housing二、读取数据import pandas as pdhousing=pa.read_csv('./housing.csv')三、观察数据head()输出前5个数据和表头info()输出每个特征的元素总个数,因此可...原创 2018-04-11 16:14:24 · 2358 阅读 · 3 评论 -
Scikit-Learn 与 TensorFlow 机器学习实用指南 读书笔记(二)
五、查看训练集的特征图像信息以及特征之间的相关性特征之间的组合:两个特征对目标的相关性都不强,但是组合起来可能有较大的提升经特征组合,可以看到新的特征bedrooms_per_room对median_house_value的影像较大(-0.25)负相关,即每个房子卧室越少,价格反而更贵。...原创 2018-04-11 18:52:13 · 230 阅读 · 0 评论 -
Scikit-Learn 与 TensorFlow 机器学习实用指南 读书笔记(三)
六、准备数据(数据预处理)首先分开特征(feature)和目标标签(label),以median_house_value为标签,其他为特征train_housing = strat_train_set.drop("median_house_value", axis=1)train_housing_labels = strat_train_set["median_house_value"].copy...原创 2018-04-11 19:15:03 · 724 阅读 · 0 评论 -
关于sklearn中MINST数据的读取报错OSError: could not read bytes
在很多的书上网上看到的是这两行代码,from sklearn.datasets import fetch_mldatamnist=fetch_mldata('MNIST original')但是在自己运行的时候会报错,查询之后发现应该改为:mnist = fetch_mldata('MNIST original',data_home=r'path');注释:path为你要存放的路径即可。...原创 2018-04-12 21:55:16 · 3305 阅读 · 0 评论 -
Scikit-Learn 与 TensorFlow 机器学习实用指南 读书笔记(四)
集成学习:假设要解决一个复杂的问题,让众多的学生去回答,然后汇总他们的答案。在许多情况下,会发现这个汇总的答案比一个老师的答案要好。同样,如果汇总了一组预测变量(例如分类器或回归因子)的预测结果,则通常会得到比最佳个体预测变量得到更好的预测结果。这种技术被称为集成学习。1.投票分类器(Voting Classifiers)创建一个集成分类器的一个非常简单的方法是聚合多个分类器(如:Linear,L...原创 2018-04-12 22:18:52 · 377 阅读 · 0 评论 -
统计学习方法笔记(一):K近邻法的实现:kd树
实现k近邻算法时,首要考虑的问题是如何对训练数据进行快速的k近邻搜索。这点在特征空间的维数大于训练数据容量时尤为重要。构造kd树 kd 树是一种对k为空间中的实例点进行存储的一边对其进行快速检索的树形数据结构。kd树是二叉树,表示对k维空间的一个划分(partition)。构造kd树相当于不断地用垂直于坐标轴的超平面将k维空间切分。构成一系列的k维超矩形区域。kd树的每个结点对应于一...原创 2018-12-18 11:40:06 · 379 阅读 · 0 评论