【PyTorch】多层感知机-训练Fashion-MNIST

这篇博客介绍了如何使用PyTorch构建并训练一个多层感知机模型,针对Fashion-MNIST数据集进行深度学习。模型包含Flatten, Linear, ReLU激活函数和Dropout层,训练过程中记录了各epoch的损失(loss)变化,并在最后进行了模型测试,测试准确率为0.8315。" 18526599,1325911,Mahout贝叶斯分类实践与数据解析,"[' mahout', '贝叶斯算法', '数据处理']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用fashion-MNIST演示PyTorch实现多层感知机的创建、训练和测试

导入依赖包

import torch
import torch.utils.data as Data
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
from torch.nn import init
import sys

加载数据集

mnist_train = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST',train=True, download=True, transform=transforms.ToTensor())
mnist_test = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST',train=False, download=True, transform=transforms.ToTensor())

batch_size = 128
if sys.platform.startswith('w
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值