Halcon的 Filter (过滤)目录之div_Image算子

本文介绍了如何在Halcon中利用div_image函数对图像进行归一化处理,通过除以另一个图像消除尺度和光照变化影响,提升机器视觉和目标检测的准确性。示例展示了使用read_image和gen_image_gray_ramp创建图像后进行相除的操作过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在Halcon中,两个图像相除可以用于实现图像归一化,这可以消除图像的尺度和光照变化对图像处理和识别的影响。例如,在机器视觉和图像处理中,往往需要将不同尺寸和亮度的图像进行归一化处理,以便后续的特征提取和目标检测等任务。通过将两幅图像相除,可以消除图像的尺度和光照变化对图像处理和识别的影响,提高目标检测和识别的准确率。

div_Image算子说明:使两个图像相除。

函数参数:
Image1:输入图像 1 (byte/ int1/int2 / uint2*/ int4/int8 / real /direction/cyclic/complex)
Image2 :输入图像2 (byte/int1/int2/uint2*/ int4/int8/ real /direction/cyclic/complex)
ImageResult :输出两个图像相除产生新的图像;
Mult:输入灰度适用值,默认: 255 ,参考: 0.1, 0.2,0.5,1.0, 2.0, 3.0,10,100, 500,10000 , -1000 < Mult < 1000 ;
Add 输入灰度变化值,默认: 0 ,参考: 0.0,128.0, 256.0,1025 , -1000 < Add < 1000;
例子:
read_image (Scene00, 'autobahn/scene_00')//读一张图片
gen_image_gray_ramp (ImageGrayRamp, 0.2, 0.2, 128, 256, 256, 512, 512)//创建一个渐变单通道图像 
div_image (Scene00, ImageGrayRamp, ImageResult, 255, 0)//两个图像相除

 读一张图片

创建一个渐变单通道图像  

 

 两个图像相除

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值