从n-gram到Bert聊一聊词向量:神经概率语言模型

本文探讨了神经网络语言模型NNLM,介绍了其目标、分解函数以及与CBOW模型的区别。NNLM通过拼接n-1个词向量来构建输入层,采用tanh激活的隐藏层,以及softmax激活的输出层,旨在预测下一个词的概率。在训练过程中,使用最大log似然函数和随机梯度下降。与CBOW模型相比,NNLM的输入层、隐藏层和输出层结构有所不同。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

神经网络语言模型NNLM:

论文:Bengio, Yoshua, et al. "A neural probabilistic language model."  http://jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

目标是学一个好的模型  ,分解函数为两个部分:
一是V中任何元素i到实数向量的映射C,C表示与词汇表中的每个单词相关联的分布式特征向量。训练时,C由|v|\times m的矩阵表示,其中 |V| 表示词表的大小(语料中的总词数),m 表示词向量的维度。

二是单词的概率函数表示为:函数g已知从上下文的输入特征向量  预测概率分布的下一个词w_{t}

输入、输出、参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值