Encoder-Decoder架构与注意力机制

本文深入探讨了Encoder-Decoder架构在处理长序列任务时如何捕获上下文信息,详细介绍了注意力机制的不同类型,如普通注意力、多头注意力、硬性注意力、键值对注意力和结构化注意力,以及它们在处理序列到序列任务中的应用。同时,还提到了指针网络在定位相关信息中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Encoder-Decoder架构模型,如下图:

Encoder会利用整个原始句子生成一个语义向量,Decoder再利用这个向量翻译成其它语言的句子。这样可以把握整个句子的意思、句法结构、性别信息等等。

Encoder对X 进行非线性变换得到中间语义向量c :

c=G(x_{1},x_{2},...,x_{n})

Decoder根据语义c 和生成的历史单词(y_{1},y_{2},...,y_{i-1})生成第i个单词 y_i :

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值