弗洛伊德(Floyd)算法

本文深入探讨了弗洛伊德算法,一种用于求解所有顶点对之间最短路径的经典算法。通过详细的代码实现,展示了如何使用邻接矩阵表示图,并通过迭代更新路径来寻找最短路径。文章还提供了完整的C语言代码示例,帮助读者理解和应用该算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求每对顶点之间的最短路径

弗洛伊德算法实现

#include <stdio.h>
#define MaxSize 100
#define INF 32767	//INF表示∞
#define	MAXV 100	//最大顶点个数
typedef int InfoType;

typedef struct 
{  	
	int no;						//顶点编号
	InfoType info;				//顶点其他信息
} VertexType;					//顶点类型
typedef struct  				//图的定义
{  	
	int edges[MAXV][MAXV]; 		//邻接矩阵
   	int n,e;   					//顶点数,弧数
	VertexType vexs[MAXV];		//存放顶点信息
} MGraph;						//图的邻接矩阵类型
void Ppath(int path[][MAXV],int i,int j)  //前向递归查找路径上的顶点
{
	int k;
	k=path[i][j];
	if (k==-1) return;	//找到了起点则返回
	Ppath(path,i,k);	//找顶点i的前一个顶点k
	printf("%d,",k);
	Ppath(path,k,j);	//找顶点k的前一个顶点j
}
void Dispath(int A[][MAXV],int path[][MAXV],int n)
{
	int i,j;
	for (i=0;i<n;i++)
		for (j=0;j<n;j++) 
		{
			if (A[i][j]==INF) 
			{
				if (i!=j) 
					printf("从%d到%d没有路径\n",i,j);
			}
			else 
			{
				printf("  从%d到%d=>路径长度:%d 路径:",i,j,A[i][j]);
				printf("%d,",i);	//输出路径上的起点
				Ppath(path,i,j);	//输出路径上的中间点
				printf("%d\n",j);	//输出路径上的终点
			}
		}
} 
void Floyd(MGraph g)
{
	int A[MAXV][MAXV],path[MAXV][MAXV];
	int i,j,k;
	for (i=0;i<g.n;i++)
		for (j=0;j<g.n;j++) 
		{
			A[i][j]=g.edges[i][j];
			path[i][j]=-1;
		}
	for (k=0;k<g.n;k++)
	{
		for (i=0;i<g.n;i++)
			for (j=0;j<g.n;j++)
				if (A[i][j]>A[i][k]+A[k][j]) 
				{
					A[i][j]=A[i][k]+A[k][j];
					path[i][j]=k;
				}
	}
	Dispath(A,path,g.n);   //输出最短路径
}

void main()
{
	int i,j;
	MGraph g;
	g.n=4;g.e=8;
	int a[4][MAXV]={
		{0,  5,INF,7},
		{INF,0,  4,2},
		{3,  3,  0,2},
		{INF,INF,1,0}};
	for (i=0;i<g.n;i++)	
		for (j=0;j<g.n;j++)
			g.edges[i][j]=a[i][j];
	printf("各顶点的最短路径:\n");
	Floyd(g);
	printf("\n");
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值