求每对顶点之间的最短路径
弗洛伊德算法实现
#include <stdio.h>
#define MaxSize 100
#define INF 32767 //INF表示∞
#define MAXV 100 //最大顶点个数
typedef int InfoType;
typedef struct
{
int no; //顶点编号
InfoType info; //顶点其他信息
} VertexType; //顶点类型
typedef struct //图的定义
{
int edges[MAXV][MAXV]; //邻接矩阵
int n,e; //顶点数,弧数
VertexType vexs[MAXV]; //存放顶点信息
} MGraph; //图的邻接矩阵类型
void Ppath(int path[][MAXV],int i,int j) //前向递归查找路径上的顶点
{
int k;
k=path[i][j];
if (k==-1) return; //找到了起点则返回
Ppath(path,i,k); //找顶点i的前一个顶点k
printf("%d,",k);
Ppath(path,k,j); //找顶点k的前一个顶点j
}
void Dispath(int A[][MAXV],int path[][MAXV],int n)
{
int i,j;
for (i=0;i<n;i++)
for (j=0;j<n;j++)
{
if (A[i][j]==INF)
{
if (i!=j)
printf("从%d到%d没有路径\n",i,j);
}
else
{
printf(" 从%d到%d=>路径长度:%d 路径:",i,j,A[i][j]);
printf("%d,",i); //输出路径上的起点
Ppath(path,i,j); //输出路径上的中间点
printf("%d\n",j); //输出路径上的终点
}
}
}
void Floyd(MGraph g)
{
int A[MAXV][MAXV],path[MAXV][MAXV];
int i,j,k;
for (i=0;i<g.n;i++)
for (j=0;j<g.n;j++)
{
A[i][j]=g.edges[i][j];
path[i][j]=-1;
}
for (k=0;k<g.n;k++)
{
for (i=0;i<g.n;i++)
for (j=0;j<g.n;j++)
if (A[i][j]>A[i][k]+A[k][j])
{
A[i][j]=A[i][k]+A[k][j];
path[i][j]=k;
}
}
Dispath(A,path,g.n); //输出最短路径
}
void main()
{
int i,j;
MGraph g;
g.n=4;g.e=8;
int a[4][MAXV]={
{0, 5,INF,7},
{INF,0, 4,2},
{3, 3, 0,2},
{INF,INF,1,0}};
for (i=0;i<g.n;i++)
for (j=0;j<g.n;j++)
g.edges[i][j]=a[i][j];
printf("各顶点的最短路径:\n");
Floyd(g);
printf("\n");
}