
pytorch笔记
小树苗m
硕士研究生,主要研究方向人工智能、数据处理。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
16、pytorch中张量的8种创建方法
在PyTorch中,创建张量的8种方法原创 2024-01-23 19:12:06 · 911 阅读 · 0 评论 -
15、pytorch张量基本操作、卷积池化介绍、简单神经cnn网络搭建和训练示例
第一章 pytorch介绍第二章 pytorch中张量的数据类型介绍第三章 pytorch张量的基本操作3.1 创建张量3.2 张量操作3.3 张量索引3.4. 自动求导第四章 PyTorch中卷积、池化、激活函数、全连接层介绍4.1 卷积层4.2 池化层4.3 激活函数4.4 全连接层第五章 pytorch中CNN网络搭建和训练示例PyTorch是一个基于Python的科学计算库,主要用于深度学习和人工神经网络。它是一个开源项目,由Facebook人工智能研究团队开发,并且非常受欢迎。原创 2023-05-31 11:20:43 · 1090 阅读 · 0 评论 -
14、yolov5-6中数据预处理、模型输出nms单独计算、onnxruntime的gpu版本前向推理
1、数据输入预处理、模型输出nms等2、onnxgpu版本的前向推理测试原创 2022-07-05 17:39:43 · 1153 阅读 · 0 评论 -
13、创建标准的voc格式、并适配新fasterrcnn和ssd数据格式
创建标准的voc格式、并适配新fasterrcnn和ssd数据格式原创 2022-06-29 17:39:10 · 193 阅读 · 0 评论 -
12、voc数据集转yolo格式、划分yolo训练集和验证集
voc数据集yolo格式训练集验证集原创 2022-06-29 17:32:58 · 612 阅读 · 0 评论 -
11、修改voc数据集中xml文件内容(path)、修改图像文件名
1、voc转yolo数据集2、训练集验证集划分3、修改xml文件原创 2022-06-25 21:00:13 · 1063 阅读 · 0 评论 -
10 统计准确率、精确率、召回率
class CountARP(object): ''' TP:正类预测成正类 FP:负类预测成正类 TN:负类预测成负类 FN:正类预测成负类 ''' def __init__(self): self.TP, self.FP = 0,0 self.TN, self.FN = 0,0 def get_TF(self,pred,label): for i in range(len(pred).原创 2022-05-07 20:22:31 · 342 阅读 · 0 评论 -
9、mobilenetV3
import torchfrom torch import nnfrom torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequentialimport torch.nn.functional as Ffrom torch.nn import initclass hswish(nn.Module): def forward(self,x): out=x*F.relu6(x+3,inplace=True)/6原创 2022-04-17 20:28:45 · 167 阅读 · 0 评论 -
8、mobilenetV2
import torchfrom torch import nn'''mobilenev2'''class Head(nn.Module): def __init__(self, inp_c, out_c): super(Head, self).__init__() self.conv2d = nn.Conv2d(inp_c, out_c, 3, 2, padding=1, bias=False) self.bn = nn.BatchNorm原创 2022-04-17 20:27:18 · 223 阅读 · 6 评论 -
7、mobilenetv1
import torchimport torch.nn as nn# 深度可分离卷积class Depth_Separable_Conv(nn.Module): def __init__(self, in_channels, out_channels, stride=1): super().__init__() self.in_channels = in_channels self.out_channels = out_channels原创 2022-04-17 20:25:44 · 256 阅读 · 0 评论 -
6、LeNet网络搭建、模型训练、模型测试
import osimport sysimport torchimport torch.nn as nnfrom torchvision.datasets import MNISTimport torchvision.transforms as transformsfrom torch.utils.data import DataLoaderimport matplotlib.pyplot as pltimport torch.optim as optim'''作者:小宇时间:202原创 2022-04-10 17:07:00 · 475 阅读 · 0 评论 -
5、模型的剪枝、测试
import timeimport torchfrom torch import nnimport torch.nn.utils.prune as prunefrom torchsummary import summaryimport torch.nn.functional as Fdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")class LeNet(nn.Module): def __ini原创 2022-04-09 21:43:56 · 1490 阅读 · 0 评论 -
4、pyorch模型转换为onnx、.pb、.h文件
#https://pypi.tuna.tsinghua.edu.cn/simpleimport torchimport onnxfrom onnx_tf.backend import preparefrom onnx2keras import onnx_to_kerasimport kerasimport tensorflow as tf'''---------------------------------------------------------------------------原创 2021-09-03 10:00:40 · 3229 阅读 · 9 评论 -
2、pytorch之gpu部署两种方法(方法一为常用方法)
方法一、先声明再部署import torch'''1)以下两种写法都可以,最常用的是第二个(gpu不可用就默认使用cpu),作用都是声明device2)其中“cuda”部分也可以写为"cuda:0/1/2...",0,1,2等表示显卡编号'''device = torch.device("cuda")device = torch.device("cuda" if torch.cuda.is_availabel() else "cpu")'''下面就是将模型、数据(输入、标签)、损失部署在原创 2021-08-23 00:18:25 · 1340 阅读 · 0 评论 -
3、pytorch之完整模型验证套路
import torchvisionfrom PIL import Image'''1)加载数据并做相应的处理'''#此处读取图片,你也可以读取语音等其他数据,image_path表示路径和文件名image = Image.open(image_path)#将数据类型和维度转换为网络需要输入的tensor数据类型和维度#本例中将图像resize成64*64大小的数据并转化为tensorflow格式transform = torchvision.transforms.Compose([tor原创 2021-08-23 00:46:31 · 511 阅读 · 0 评论 -
1、pytorch之transforms(numpy数据类型转化为tensor,归一化、resize)
from torchvision import transformstensor = transforms.Tensor() #初始化对象#img_or_np为“PIL Image”或者"numpy.",即你要转化的对象data = tensor(img_or_np) trans_resize = transforms.Resize(512,512)data = trans_resize(data)#下面将数据data归一化,计算方法为:image=(image-mean)/std'''其中原创 2021-08-22 22:24:02 · 2494 阅读 · 0 评论