一、布隆过滤器是什么
布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。
二、布隆过滤器的基本思想
通过一种叫作散列表(又叫哈希表,Hash table)的数据结构。它可以通过一个Hash函数将一个元素映射成一个位阵列(Bit array)中的一个点。这样一来,我们只要看看这个点是不是1就可以知道集合中有没有它了
三、布隆过滤器如何解决哈希冲突的
解决方法就是使用多个Hash函数,如果它们有一个说元素不在集合中,那肯定就不在。如果它们都说在,虽然也有一定可能性它们在说谎,不过直觉上判断这种事情的概率是比较低的。
四、布隆过滤器的优缺点
优点:
1.布隆过滤器的存储空间和插入/查询时间都是常数
2.Hash函数相互之间没有关系,方便由硬件并行实现
3.布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势
4.布隆过滤器可以表示全集,其它任何数据结构都不能
缺点:
1.存在一定的误算率,随着存入的元素数量增加,误算率随之增加
(常见的补救办法是建立一个小的白名单,存储那些可能被误判的元素。但是如果元素数量太少,则使用散列表足矣)
2.一般情况下不能从布隆过滤器中删除元素
首先我们必须保证删除的元素的确在布隆过滤器里面. 这一点单凭这个过滤器是无法保证的。另外计数器回绕也会造成问题。这就导致删除元素需要很高的成本。
五、布隆过滤器的应用场景
1.网页URL的去重
2.垃圾邮件的判别
3.集合重复元素的判别
4.查询加速(比如基于key-value的存储系统)等
/**
* 描述:TODO(用一句话描述该文件做什么)
*/
package com.zbq.utils;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.BitSet;
/**
* 类名: BloomFilterTest
* 包名: com.utilTest
* 描述: 布隆过滤器,传统的布隆过滤器不支持从集合中删除成员
*/
public class BloomFilterTest {
//DEFAULT_SIZE为2的29次方,即此处的左移28位
private static final int DEFAULT_SIZE = 2<<28;
/*
* 不同哈希函数的种子,一般取质数
* seeds数组共有8个值,则代表采用8种不同的哈希函数
*/
private int[] seeds = new int[]{3, 5, 7, 11, 13, 31, 37, 61};
/*
* 初始化一个给定大小的位集
* BitSet实际是由“二进制位”构成的一个Vector。
* 假如希望高效率地保存大量“开-关”信息,就应使用BitSet.
*/
private BitSet bitSets = new BitSet(DEFAULT_SIZE);
//构建hash函数对象
private SimpleHash[] hashFuns = new SimpleHash[seeds.length];
//布隆过滤器配置文件存放路径
private String path = "";
public BloomFilterTest(String path){
/**
* 给出所有的hash值,共计seeds.length个hash值。共8位。
* 通过调用SimpleHash.hash(),可以得到根据8种hash函数计算得出hash值。
* 传入DEFAULT_SIZE(最终字符串的长度),seeds[i](一个指定的质数)即可得到需要的那个hash值的位置。
*/
for(int i=0; i<seeds.length; i++){
hashFuns[i] = new SimpleHash(DEFAULT_SIZE, seeds[i]);
}
//配置文件路径地址
this.path = path;
}
/**
*
* 方法名:add
* 描述:将给定的字符串标记到bitSets中,即设置字符串的8个函数值的位置为1
* @param value
*/
public synchronized void add(String value){
for(SimpleHash hashFun : hashFuns){
bitSets.set(hashFun.hash(value), true);
}
}
/**
*
* 方法名:isExit
* 描述:判断给定的字符串是否已经存在在bloofilter中,如果存在返回true,不存在返回false
* @param value
* @return
*/
public synchronized boolean isExit(String value){
//判断传入的值是否为null
if(null == value){
return false;
}
for(SimpleHash hashFun : hashFuns){
if(!bitSets.get(hashFun.hash(value))){
//如果判断8个hash函数值中有一个位置不存在即可判断为不存在Bloofilter中
return false;
}
}
return true;
}
/**
*
* 方法名:init
* 描述:读取配置文件
*/
public void init(){
File file = new File(path);
FileInputStream in = null;
try {
in = new FileInputStream(file);
long lt = System.currentTimeMillis();
read(in);
System.out.println(System.currentTimeMillis()-lt);
System.out.println(Runtime.getRuntime().totalMemory());
}catch(Exception e){
e.printStackTrace();
}finally{
try {
if(in!=null){
in.close();
in = null;
}
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
/**
*
* 方法名:read
* 描述:根据传入的流,初始化bloomfilter
* @param in
*/
private void read(InputStream in){
if(null == in){ //如果in为null,则返回
return;
}
int i = 0;
InputStreamReader reader = null;
try {
//创建输入流
reader = new InputStreamReader(in, "UTF-8");
BufferedReader buffReader = new BufferedReader(reader, 512);
String theWord = null;
do {
i++;
theWord = buffReader.readLine();
//如果theWord不为null和空,则加入Bloomfilter中
if(theWord!=null && !theWord.trim().equals("")){
add(theWord);
}
if(i%10000 == 0){
System.out.println(i);
}
} while (theWord != null);
} catch (IOException e){
e.printStackTrace();
} finally{
//关闭流
try {
if(reader != null){
reader.close();
reader = null;
}
if(in != null){
in.close();
in = null;
}
} catch (IOException e) {
// TODO: handle exception
e.printStackTrace();
}
}
}
/**
* 方法名:main
* 描述:TODO(这里用一句话描述这个方法的作用)
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
BloomFilterTest bloomFilterTest = new BloomFilterTest("f:/fetchedurls.txt");
bloomFilterTest.init();
System.out.println(bloomFilterTest.isExit("http://www.plating.org/news_info.asp?pid=28&id=2857"));
}
public static class SimpleHash {
/*
* cap为DEFAULT_SIZE,即用于结果的最大字符串的值
* seed为计算hash值的一个key值,具体对应上文中的seeds数组
*/
private int cap;
private int seed;
/**
*
* 构造函数
* @param cap
* @param seed
*/
public SimpleHash(int cap, int seed){
this.cap = cap;
this.seed = seed;
}
/**
*
* 方法名:hash
* 描述:计算hash的函数,用户可以选择其他更好的hash函数
* @param value
* @return
*/
public int hash(String value){
int result = 0;
int length = value.length();
for(int i=0; i<length; i++){
result = seed*result + value.charAt(i);
}
return (cap-1) & result;
}
}
}