安装Pytorch——CPU版本

在这里插入图片描述

1. 打开pytorch官网

网站: https://pytorch.org/

2. 选择pip安装pytorch-cpu

在这里插入图片描述

3.复制安装命令

pip3 install torch torchvision torchaudio

4. 在cmd命令窗口,进入你的虚拟环境

4.1 创建虚拟环境

创建虚拟环境的方式可以查看我的历史博客
创建虚拟环境的方式:

### 如何安装 PyTorchCPU 版本 #### 创建 Anaconda 虚拟环境 为了确保 Python 和其他依赖项的兼容性,建议先创建一个新的虚拟环境来安装 PyTorch。以下是具体操作: 通过 `conda` 命令可以轻松完成这一过程。最新的 PyTorch 版本通常要求 Python版本至少为 3.9 或更高[^3]。 ```bash conda create -n pytorch_env python=3.9 ``` 上述命令会创建一个名为 `pytorch_env` 的新虚拟环境,并指定 Python 版本为 3.9。如果需要自定义路径,则可使用如下命令: ```bash conda create --prefix=/path/to/custom/directory/pythonenv python=3.9 ``` 接着激活该虚拟环境以便后续安装软件包: ```bash conda activate pytorch_env ``` #### 获取并执行安装指令 访问 [PyTorch 官网](https://pytorch.org/get-started/locally/) 并导航至 **Install PyTorch** 部分,在这里可以根据操作系统、Python 解释器以及硬件加速选项(如 CUDA 支持与否)筛选适合的安装方式[^2]。对于仅需 CPU 支持的情况,请选择相应的配置组合以获取推荐的 conda 安装命令。 例如,针对 Linux 系统下的纯 CPU 版本可能得到这样的安装语句: ```bash conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` 运行此命令即开始下载和设置所需的库文件及其依赖关系。 #### 验证安装成果 确认安装无误的一个简单办法是在同一活动环境中调用以下检查手段: ```bash conda list | grep torch ``` 这步操作旨在查看当前环境中是否存在名为 `torch`, `torchvision` 及其关联组件的信息记录;若有显示则表明安装成功。 另外也可以启动 Python 控制台测试基本功能是否正常运作: ```python import torch print(torch.__version__) print(torch.cuda.is_available()) ``` 理想情况下,后者应返回 False 表明未检测到任何可用 GPU 设备——这是预期行为因为选择了 CPU-only 构建模式。 #### 在 IDE 中配置解释器 最后一步涉及集成开发环境 (IDE),比如 PyCharm 设置项目使用的特定 Python 解析引擎。进入相应菜单选取先前建立好的含 PyTorch 组件之虚拟空间作为目标解析工具链即可。 --- ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值