
机器学习数学基础
文章平均质量分 88
《机器学习数学基础》一书的专栏,本书由电子工业出版社出版
CS创新实验室
致力于计算机、人工智能相关领域的研发和教学
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
贝叶斯定理:从历史到实践,全面入门指南
本文系统介绍了贝叶斯定理的核心概念与应用。从18世纪贝叶斯的发现讲起,详细解析了定理的数学形式P(A|B)=[P(B|A)·P(A)]/P(B),并通过条件概率推导其来源。重点阐述了定理的"信念更新"本质,即用新证据修正先验概率。通过疾病诊断和硬币测试两个典型案例,展示了如何计算后验概率,并揭示罕见病检测中假阳性率高的问题。最后提供Python实现代码,演示了定理的实际应用。贝叶斯定理不仅是概率工具,更是一种数据驱动的思维方式,广泛应用于医学、AI等领域。文章建议读者从简单案例入手,在实原创 2025-08-02 08:15:13 · 880 阅读 · 0 评论 -
《机器学习数学基础》补充资料:泰勒定理与余项
本文介绍了泰勒定理及其余项的概念,重点讨论了三种余项形式:拉格朗日型、皮亚诺型和积分型。泰勒定理表明,函数可以用多项式加上余项来近似表示。拉格朗日型余项给出了误差的具体表达式,皮亚诺型余项通过高阶无穷小描述误差特性,而积分型余项则用积分表示误差。文章通过具体例子(如sin(1)的近似计算)展示了如何利用余项估计近似值的误差范围,并比较了泰勒展开与幂级数收敛区间的区别。这些理论为函数近似和误差分析提供了重要工具。原创 2025-08-02 08:07:21 · 688 阅读 · 0 评论 -
《机器学习数学基础》补充资料:利用泰勒展开求高阶导数
本文介绍了泰勒展开在计算高阶导数中的应用。通过将函数在某点展开为泰勒级数,其系数与高阶导数直接相关,从而可以推导出任意阶导数的解析表达式。具体步骤包括获取泰勒级数展开式、识别级数系数,并通过公式f^(n)(a)=c_n·n!计算导数。文中以e^x和ln(1+x)为例进行演示,验证了该方法的有效性。该方法适用于解析计算,尤其适合多项式、指数函数等具有简单级数展开的函数,在数学分析、物理和工程领域应用广泛。原创 2025-08-01 07:46:46 · 1240 阅读 · 0 评论 -
《机器学习数学基础》补充资料:泰勒展开式
本文介绍了泰勒展开的基本原理及其应用。泰勒展开通过多项式逼近函数,利用函数在某点的各阶导数信息构建近似表达式。文章详细阐述了泰勒展开的数学推导过程,演示了如何通过k阶切近方法构造逼近多项式,并验证了展开式的正确性。通过具体例子(如指数函数e^x和三角函数sin(x))展示了麦克劳林展开(泰勒展开在x=0处的特例)的实际应用。此外,文章还讨论了其他函数的展开技巧,如利用已知级数进行代换和积分操作。泰勒展开为复杂函数提供了多项式近似,简化了计算和分析过程,在数学和工程领域具有广泛应用价值。原创 2025-07-26 08:30:00 · 1012 阅读 · 0 评论 -
《机器学习数学基础》补充资料:标准差与标准化
摘要 标准差是衡量数据离散程度的重要指标,通过计算数据与平均值的偏离程度来反映数据分布的集中或分散情况。为避免正负抵消问题,采用离均差平方的平均(方差)再开方得到标准差。数据标准化是将原始数据转换为均值为0、标准差1的Z分数,便于不同量纲数据的比较。例如,小明身高标准化得分为3,表示高于平均值3个标准差。标准化后的数据具有无单位特性,适用于跨数据集比较。门萨俱乐部要求IQ130(高于均值2个标准差)的入会标准即基于此原理。这些统计概念在《机器学习数学基础》中有详细阐述。原创 2025-07-16 21:16:48 · 1067 阅读 · 0 评论 -
《机器学习数学基础》补充资料:拉格朗日乘子法
摘要: 本文介绍了数学家欧拉与拉格朗日的轶事,引出拉格朗日乘子法的由来。欧拉曾长期未能解决的条件极值问题被19岁的拉格朗日巧妙破解,其方法核心是令目标函数与约束条件的梯度成比例(∇f=λ∇g),通过联立方程求解极值点。文章以z=xy在单位圆约束为例,图解说明极值点对应两曲线相切的位置,并给出完整的解题步骤示例,包括方程组建立、消元技巧和几何意义分析。该方法虽原理简单,但实际求解需灵活处理联立方程,是优化问题的经典工具。原创 2025-07-16 06:11:38 · 843 阅读 · 0 评论 -
《机器学习数学基础》补充资料:自然指数和自然对数
本文探讨了复利计算与自然指数e的关系。通过分析不同计息频率下的本利和变化,指出当计息次数趋于无限时,本利和收敛于A×e^P。其中自然常数e定义为lim(1+1/n)^n≈2.71828,并推导出一般形式lim(1+P/n)^n=e^P。文章还介绍了自然对数ln(x)=logₑx的性质,包括重要的极限lim(x→0)[ln(1+x)/x]=1。这些概念构成了微积分中指数和对数函数的基础理论。原创 2025-07-16 08:00:00 · 840 阅读 · 0 评论 -
408考研逐题详解:2010年第31题——文件系统的目录
摘要: 2010年第31题考查操作系统文件系统中“当前工作目录”(CWD)的作用。CWD是进程的默认路径起点,允许使用相对路径访问文件,减少路径解析的步骤(如从根目录逐层检索),从而加快文件检索速度(选C)。CWD对内存/外存空间无显著影响,也不直接提升文件读写速度。解析中对比了绝对路径和相对路径的检索效率,说明CWD优化了目录遍历过程。 (字数:150)原创 2025-07-15 08:30:11 · 424 阅读 · 0 评论 -
《机器学习数学基础》补充资料:莱布尼兹的最原始版的微分法则
摘要:微分(differential)在数学中具有多重含义,中文语境下既可作为动词"求导"(differentiate),又可表示无穷小增量关系。以函数y=x²为例,求导得dy/dx=2x,微分则表示为dy=2xdx,体现局部以切线逼近曲线的思想。莱布尼兹最早通过忽略高阶无穷小量推导微分法则,如d(xy)=xdy+ydx。微分概念的本质在于线性逼近,其应用包括利用切线进行函数估值。初学者需注意区分导数、微分等术语在不同语境下的具体含义。原创 2025-07-15 08:00:00 · 687 阅读 · 0 评论 -
《机器学习数学基础》补充资料:什么是随机变量
摘要:本文通过伯特兰悖论阐述了随机变量的重要性。在求解外接圆内随机弦长大于正三角形边长的概率时,三种合理方法得出不同结果(1/2、1/3、1/4),揭示了"随机"定义的模糊性。随机变量将试验结果数值化,如用X、Y、Z分别表示不同随机方法中的关键参数,使不同解法间的矛盾得以澄清。该案例说明概率问题需明确定义随机机制,避免直观歧义,这正是发展随机变量概念的意义所在——为概率论提供严谨的数学基础。文中附计算机模拟验证三种方法的结果差异。原创 2025-07-02 08:15:00 · 836 阅读 · 0 评论 -
《机器学习数学基础》补充资料:矩阵的由来及线性变换
本文从解线性方程组的消元法出发,引出矩阵表示法的必要性。通过类比实数方程ax=b的解法,提出了矩阵方程AX=C的解法思路:当逆矩阵A⁻¹存在时,可通过左乘A⁻¹得到唯一解X=A⁻¹C。文章详细阐述了逆矩阵的定义(满足AA⁻¹=I)、单位矩阵I的性质,以及逆矩阵存在的关键条件:行列式det(A)≠0。文中还通过三个例题展示了如何求解逆矩阵、验证矩阵方程等实际问题,揭示了行列式与逆矩阵的关系(det(A⁻¹)=1/det(A))。全文以线性方程组求解为主线,系统性地介绍了矩阵运算的基本概念和应用方法。原创 2025-07-01 08:00:00 · 949 阅读 · 0 评论 -
《机器学习数学基础》补充资料:多元线性回归的核心逻辑与 Python 实现
多元线性回归是一种分析多个自变量与一个连续因变量关系的统计方法,广泛应用于经济、金融、医疗等领域。其数学模型为y=β₀+β₁x₁+...+βₖxₖ+ε,通过最小二乘法估计参数,要求满足线性关系、误差独立同分布等基本假设。模型评估包括R²、调整R²、F检验等指标。使用Python的scikit-learn或statsmodels库可实现数据处理、建模和评估全流程,如加州房价预测案例所示,该方法是多变量数据分析的重要工具。原创 2025-06-28 08:00:00 · 670 阅读 · 0 评论 -
《机器学习数学基础》补充资料:梯度、方向导数与切平面
本文介绍了梯度与方向导数的概念及其几何意义。梯度定义为函数在各变量上的偏微分构成的向量,方向导数则描述函数在某点沿特定方向的斜率变化率。通过数学推导得出,方向导数等于梯度向量与方向单位向量的内积。梯度方向指示了函数在该点增长最快的方向,其长度即为该方向上的最大方向导数值。文中通过多个例题演示了如何计算梯度及方向导数,并解释了这些概念在实际场景中的应用,如热锅上的蚂蚁选择和山坡坡度判断等问题。这些数学工具为分析多变量函数的局部性质提供了重要方法。原创 2025-06-26 08:00:00 · 695 阅读 · 0 评论 -
《机器学习数学基础》补充资料:罗必达法则常见误用之探讨
罗必达法则用于求解不定型极限(0/0或∞/∞型),要求函数在极限点附近可微且导数比值极限存在。使用需注意:1)必须是0/0或∞/∞型;2)导数比值极限须存在;3)函数在极限点附近必须可微。文中通过具体实例展示了误用罗必达法则的常见错误(如不具备可微条件时强行使用),并指出即使条件满足也可能出现循环推导无法简化的情况。特别强调,当函数仅在单点可微时不可使用该法则,并通过分段函数实例加以说明。正确应用时,罗必达法则能有效求解复杂极限,但必须严格验证使用前提。原创 2025-06-25 08:00:00 · 953 阅读 · 0 评论 -
连续函数与函数的极限
本文首先通过直观图形讨论了函数的连续性概念,指出依赖直观判断的局限性。随后采用形式化定义,提出函数连续需满足三个条件:函数值存在、极限存在且两者相等。在此基础上对间断点进行分类(可去与不可去),并列举了常见连续函数及其运算性质。文中还介绍了单侧极限和夹挤定理在求极限中的应用,并以两个典型例题展示了这些工具的实际运用。最后强调形式化定义在数学精确性中的重要性,为后续微积分学习奠定理论基础。原创 2025-06-24 08:15:00 · 906 阅读 · 0 评论 -
数列的极限
数列是将数字按顺序排列形成的序列,可以通过一般式或递推式表示其规律。数列可以是有限项或无限项(无穷数列)。当无穷数列趋近于某一定值时称为收敛,其极限存在;反之则发散。收敛数列具有加法、乘法等极限性质。数列的取值和极限值是不同的概念,如庄子数列趋近于0但永远不会等于0。数列的极限理论是分析数列行为的重要工具,在数学中具有广泛应用。原创 2025-06-15 21:18:13 · 477 阅读 · 0 评论 -
微积分的起源与极限的概念
微积分的发展历程与核心概念 微积分起源于17世纪末,由牛顿和莱布尼茨集前人之大成而创立。其思想源流可追溯至古希腊,欧多克索斯和阿基米德已使用"穷竭法"处理曲线图形问题。16-17世纪科学革命时期,物理和数学中的四大问题推动了微积分的发展:非匀速运动、曲线切线、函数极值、曲线围成的面积和弧长。 积分学源于求曲线围成的面积问题,采用类似割圆术的方法。微分学则是关于求曲线切线斜率的问题,通过割线斜率逼近切线斜率。微分与积分之间存在互逆关系,这是微积分的核心发现。极限概念是微分和积分的基础,包括原创 2025-06-12 08:00:00 · 742 阅读 · 0 评论 -
《机器学习数学基础》补充资料:韩信点兵与拉格朗日插值法
摘要:中国剩余定理揭示了东西方数学的奇妙呼应。《孙子算经》记载的"物不知数"问题(韩信点兵)比高斯提出的同余定理早了1200年。中国古代数学家通过构造特解和通解的方法,展现了与现代数学一致的思想。这种朴素而深刻的解法,在拉格朗日插值法中再次得到印证,体现了数学思维的一贯性。从南北朝到19世纪,从同余定理到多项式插值,东西方文明在数学领域展现出惊人的默契与共鸣。(138字)原创 2025-06-01 17:12:02 · 814 阅读 · 0 评论 -
《机器学习数学基础》补充资料汇编
《机器学习数学基础》补充资料汇编原创 2025-03-13 08:56:15 · 564 阅读 · 0 评论 -
《机器学习数学基础》补充资料:过渡矩阵和坐标变换推导
原书中的错误修订原创 2025-03-06 08:50:34 · 948 阅读 · 0 评论 -
《机器学习数学基础》补充资料:描述性统计
描述性统计简述原创 2025-03-05 12:23:51 · 752 阅读 · 0 评论 -
《机器学习数学基础》补充资料:连续正态分布随机变量的熵
连续正态分布随机变量的熵,对《机器学习数学基础》有关内容的深入解读原创 2025-03-05 08:30:07 · 913 阅读 · 0 评论 -
《机器学习数学基础》补充资料:正定矩阵
补充关于“正定矩阵”的资料原创 2025-03-04 12:24:04 · 900 阅读 · 0 评论 -
《机器学习数学基础》补充资料:向量范数
对向量范数的补充内容,介绍向量范数的性质和极小范数的定理及计算方法原创 2025-03-04 08:53:44 · 1219 阅读 · 0 评论 -
《机器学习数学基础》补充资料:对矩阵乘法的深入理解
对矩阵乘法的深入理解原创 2025-03-03 09:52:36 · 743 阅读 · 0 评论 -
《机器学习数学基础》补充资料:矩阵运算技巧和矩阵指数
关于矩阵运算的技巧,适合于手工计算,以及矩阵指数原创 2025-03-01 15:07:21 · 1210 阅读 · 0 评论 -
《机器学习数学基础》补充资料:矩阵的LU分解
本文是对《机器学习数学基础》第2章2.3.3节矩阵LU分解的拓展。原创 2025-02-28 08:36:45 · 1013 阅读 · 0 评论 -
《机器学习数学基础》补充资料:线性变换和最小二乘
《机器学习数学基础》的第1章1.3.2节、第2章2.2.3节均介绍了与线性映射、线性变换有关的内容,并指出矩阵就是两个向量空间的线性变换的表达形式。本文以一个示例,讲解如何理解线性变换,并且以此进一步理解最小二乘法。以参考文献 [1] 中提供的示例,说明矩阵与线性变换的关系。设向量空间 P2\mathbb{P}_2P2 是二次函数 p(t)=a0+a1t+a2t2p(t)=a_0+a_1t+a_2t^2p(t)=a0+a1t+a2t2 的集合,基为 β=[v1,v2,v3]\pmb{\beta}=[原创 2025-02-27 12:19:08 · 786 阅读 · 0 评论 -
《机器学习数学基础》补充资料:可逆矩阵的手工计算方法和总结
手工计算可逆矩阵的方法以及关于可逆矩阵的定理和性质总结原创 2025-02-27 08:45:17 · 1412 阅读 · 0 评论 -
《机器学习数学基础》补充资料:从几何角度理解矩阵
用几何的方式理解矩阵原创 2025-02-26 10:21:30 · 966 阅读 · 0 评论 -
《机器学习数学基础》补充资料:欧几里得空间的推广
讲解希尔伯特空间、函数空间等概念原创 2025-02-24 08:36:35 · 766 阅读 · 0 评论 -
《机器学习数学基础》补充资料:求解线性方程组的克拉默法则
中并没有将解线性方程组作为重点,只是在第2章2.4.2节做了比较完整的概述。这是因为,如果用程序求解线性方程组,相对于高等数学教材中强调的手工求解,要简单得多了。本文是关于线性方程组的拓展,供对此有兴趣的读者阅读。原创 2025-02-18 09:15:14 · 672 阅读 · 0 评论 -
《机器学习数学基础》补充资料:四元数、点积和叉积
在复数zabiz=a+bizabi中,虚数单位i2−1i^2 = -1i2−1,每个复数都可以视为平面上的一个点。在三维欧几里得空间中,每个点可以用一个有序数abc(a,b,c)abc表示,这些点之间可以进行加法运算,但能不能做乘法运算?这个问题哈密顿也曾思考。据记载6^{[6]}6,1843年10月16日,哈密顿与夫人在运河边散步,经过一座桥,突然领悟到了四元数的定义,现在那座桥旁还立有石碑。Brougham 桥旁的石碑,这里是哈密顿获得四元素灵感之地。原创 2025-02-17 08:59:39 · 897 阅读 · 0 评论 -
《机器学习数学基础》补充资料:柯西—施瓦茨不等式以及相关证明
153 页,针对图 3-4-3,提出了一个问题:“点A到W上的一个点的距离有无穷多个。现在,我们最关心的是其中最短的那个,怎么找?请参阅 3.6 节。”并且,在 3.6 节,使用最小二乘法,找到了点A为终点的向量在W上的投影向量,那么这两个向量的距离就是“最短的那个”。但是,书中没有证明此结论。本文中将在介绍柯西—施瓦茨不等式的基础上,证明此上述结论。原创 2025-02-12 08:41:50 · 1359 阅读 · 0 评论 -
《机器学习数学基础》补充资料:正交基
本文介绍线性代数的第三个定理:正交基。原创 2025-02-08 08:28:00 · 623 阅读 · 0 评论 -
《机器学习数学基础》补充资料:矩阵基本子空间
是线性代数中第一个基本定理,本文介绍的“矩阵基本子空间”,是第二定理。原创 2025-02-07 11:45:54 · 1315 阅读 · 0 评论 -
《机器学习数学基础》补充资料:秩-零化度定理
在拙作《机器学习数学基础》中,对于机器学习直接相关的线性代数的内容做了比较详细的讲解,但是,由于书中是以“机器学习”为核心,而非“线性代数”,所以对其中的更基本的内容没有深入探究。为了让有兴趣深入学习的读者对线性代数“更上层楼”,此处再补充线性代数的基本定理。线性代数的核心问题是向量空间的线性变换,向量空间是线性代数的研究对象,线性变换是研究向量空间的基本方法。线性变换将一个向量空间的子空间映射到另一个向量空间中的子空间。Gilbert Strang在著作《The Fundamental Theorem o原创 2025-02-06 08:35:25 · 1371 阅读 · 0 评论 -
《机器学习数学基础》补充资料:仿射变换
本文是对《机器学习数学基础》第 2 章 2.2.4 节齐次坐标系的内容拓展。原创 2025-02-03 14:07:54 · 1314 阅读 · 0 评论 -
费雪的线性判别分析(2)
《费雪的线性判别分析》分为两部分,这是第二部分,第一部分的连接如下:如果要判别某个样本属于哪一类,必须计算出阈值 w0w_0w0 ,求解方法有两种:关于最小二乘法的详细讲解,请阅读参考资料 [2] 的有关章节,在其中对最小二乘法通过多个角度给予了理论和应用的介绍。将两个类别的线性边界写作:g(xi)=wTxi+w0(42)g(\pmb{x}_i)=\pmb{w}^\text{T}\pmb{x}_i+w_0\tag{42}g(xi)=wTxi+w0(42)相应的最小平方误差函数:E=12∑i=1n原创 2025-01-26 10:25:02 · 893 阅读 · 0 评论 -
费雪的线性判别分析(1)
本文可作为《机器学习数学基础》[2]^{[2]}[2]的 285 页(0-1)分布相关内容的拓展阅读。对于线性判别分析的介绍,在网上或者有关书籍中,均能找到不少资料。但是,诸多内容中,未能给予线性判别分析完整地讲解,本文不揣冒昧,斗胆对其中的一部分内容,即费雪的线性判别分析进行整理,权当自己的学习笔记,在这里发布出来,供朋友们参考。英国统计学家费雪(Ronald Fisher)提出的专门针对含有两个类别样本的有监督的降维方法,称为“费雪的线性判别分析(Fisher Linear Discriminant原创 2025-01-26 10:22:04 · 882 阅读 · 0 评论