计算三叉搜索树的高度

566 篇文章

已下架不支持订阅

472 篇文章

已下架不支持订阅

题目解析

本题应该只是需要模拟出三叉树结构,以及根据指定的逻辑进行插入新节点。

三叉树节点的数据结构定义如下:

{
  val, // 节点值
  height,// 节点所在高度,
  left,// 左子树根节点,
  right,// 右子树根节点,
  mid,// 中子树根节点
}

三叉树的数据结构定义如下:

{
  root,// 根节点
  height,// 树的高度
}

三叉树插入新节点node逻辑:

  • 如果三叉树为空,则三叉树根节点root = 新节点node
  • 如果三叉树不为空,则从三叉树根节点作为比较节点cur开始比较:
  1. 如果 node.val < cur.val - 500,则node应该插入到cur节点的左子树中,
    若 cur 节点不存在左子树,那么 node 就作为 cur 节点的左子树根节点,且node.height = cur.height + 1
    若 cur 节点存在左子树,那么 cur = cur.left,继续和 node 比较
  2. 如果 node.val > cur.val + 500,则node应该插入到cur节点

已下架不支持订阅

三叉搜索树(Ternary Search Tree)是一种特殊的搜索树,每个节点最多有三个子节点:小于当前节点的键的节点在左子树,大于当前节点的键的节点在右子树,等于当前节点的键的节点在中子树。 计算三叉搜索树高度可以通过递归的方式实现。具体步骤如下: 1. 如果树为空,直接返回0作为高度。 2. 如果树不为空,计算树的左子树、中子树和右子树分别的高度,分别记为leftHeight、centerHeight和rightHeight。 3. 树的总高度等于左子树、中子树和右子树中的最大高度再加1。 4. 返回树的总高度作为结果。 以下是用Python实现的示例代码: ``` class TreeNode: def __init__(self, key): self.key = key self.left = None self.center = None self.right = None def treeHeight(root): if root is None: return 0 # 计算左子树、中子树和右子树的高度 leftHeight = treeHeight(root.left) centerHeight = treeHeight(root.center) rightHeight = treeHeight(root.right) # 返回左子树、中子树和右子树中的最大高度再加1 return max(leftHeight, centerHeight, rightHeight) + 1 # 示例用法 # 创建一个三叉搜索树 root = TreeNode(5) node1 = TreeNode(3) node2 = TreeNode(7) node3 = TreeNode(2) node4 = TreeNode(4) node5 = TreeNode(6) node6 = TreeNode(8) root.left = node1 root.center = node2 node1.left = node3 node1.right = node4 node2.left = node5 node2.right = node6 # 计算三叉搜索树高度 height = treeHeight(root) print("三叉搜索树高度为:", height) ``` 这样,就能够计算三叉搜索树高度。以上代码中,假设三叉搜索树的节点类为`TreeNode`,其中`key`表示节点的键值,`left`、`center`和`right`分别表示左子树、中子树和右子树的指针。函数`treeHeight`使用递归的方法计算树的高度,返回值为树的高度。示例中创建了一个简单的三叉搜索树,然后计算了其高度并输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员阿甘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值