- 博客(51)
- 收藏
- 关注
原创 python训练营打卡第33天
查看显卡信息的命令行命令(cmd中使用)数据预处理(归一化、转换成张量)PyTorch和cuda的安装。继承nn.Module类。定义损失函数和优化器。
2025-06-12 14:32:40
159
原创 python训练营打卡第50天
尝试对vgg16+cbam进行微调策略。好好理解下resnet18的模型结构。预训练模型+CBAM模块。针对预训练模型的训练策略。CBAM放置位置的思考。resnet结构解析。
2025-06-11 11:27:08
168
原创 python训练营打卡第48天
卷积和池化的计算公式(可以不掌握,会自动计算的)ps:numpy运算也有类似的广播机制,基本一致。pytorch的广播机制:加法和乘法的广播机制。随机张量的生成:torch.randn函数。自己多借助ai举几个例子帮助自己理解即可。
2025-06-08 17:09:04
260
原创 python训练营打卡第46天
什么是注意力:注意力家族,类似于动物园,都是不同的模块,好不好试了才知道。不同CNN层的特征图:不同通道的特征图。通道注意力:模型的定义和插入的位置。通道注意力后的特征图和热力图。通道注意力(SE注意力)
2025-06-06 15:53:09
175
原创 python训练营打卡第45天
对resnet18在cifar10上采用微调策略下,用tensorboard监控训练过程。tensorboard在cifar上的实战:MLP和CNN模型。tensorboard的发展历史和原理。tensorboard的常见操作。Tensorboard使用介绍。
2025-06-05 16:45:58
227
原创 python训练营打卡第44天
预训练模型(如 ImageNet 上训练的 ResNet)的卷积层已经学习到了通用的图像特征(边缘、纹理、形状等)。在处理新任务(如 CIFAR-10 分类)时,可以利用这些已有知识,只训练最后的全连接层来适应新的分类标签,从而显著减少训练时间和数据需求。此时使用较低的学习率,防止 破坏已经学习到的特征。(前 5 个 epoch):冻结卷积层,只训练全连接层。1.尝试在cifar10对比如下其他的预训练模型,观察差异,尽可能和他人选择的不同。2.常见的分类预训练模型。
2025-06-04 20:08:47
291
原创 python训练营打卡第42天
hook函数的模块钩子和张量钩子。Grad-CAM与Hook函数。Grad-CAM的示例。2.lamda匿名函数。理解下今天的代码即可。
2025-06-02 15:55:56
255
原创 python训练营打卡第41天
2. Flatten -> Dense (with Dropout,可选) -> Dense (Output)1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层。batch归一化:调整一个批次的分布,常用与图像数据。特征图:只有卷积操作输出的才叫特征图。调度器:直接修改基础学习率。卷积神经网络定义的写法。
2025-06-01 18:55:09
256
原创 python训练营打卡第38天
1. Dataset类的__getitem__和__len__方法(本质是python的特殊方法)3. minist手写数据集的了解。2. Dataloader类。
2025-05-29 22:47:00
187
原创 python训练营第35天
1. 三种不同的模型可视化方法:推荐torchinfo打印summary+权重分布可视化。2. 进度条功能:手动和自动写法,让打印结果更加美观。作业:调整模型定义时的超参数,对比下效果。3. 推理的写法:评估模式。
2025-05-26 22:17:15
184
原创 python训练营打卡第34天
4. 类的call方法:为什么定义前向传播时可以直接写作self.fc1(x)3. GPU训练的方法:数据和模型移动到GPU device上。1. CPU性能的查看:看架构代际、核心数、线程数。2. GPU性能的查看:看显存、看级别、看架构代际。GPU训练及类的call方法。
2025-05-25 20:31:27
189
原创 python训练营第33天
查看显卡信息的命令行命令(cmd中使用)数据预处理(归一化、转换成张量)PyTorch和cuda的安装。继承nn.Module类。MLP神经网络的训练。定义损失函数和优化器。
2025-05-24 22:05:09
245
原创 python训练营打卡第31天
但是Python 3.x 默认为 UTF-8 编码,理论上可以省略编码声明。models/ 目录:专门存放训练好的模型文件,根据模型保存格式不同,可能是 .pkl(Python pickle 格式,常用于保存 sklearn 模型 )、.h5(常用于保存 Keras 模型 )、.joblib 等。另一个是pylance,用于代码提示和类型检查,这个插件会根据你的代码中的类型注解,给出相应的提示和检查,比如你定义了一个函数,参数类型是int,那么当你传入一个字符串时,它会提示你传入的参数类型不正确。
2025-05-22 21:30:24
1492
原创 python训练营打卡第30天
导入库/模块的核心逻辑:找到根目录(python解释器的目录和终端的目录不一致)导入自定义库/模块的方式。1.标准导入:导入整个库。导入官方库的三种手段。2.从库中导入特征项。
2025-05-21 22:52:55
341
原创 python训练营打卡第29天
心得:对于类的学习让我回忆起大学本科期间学习c语言时的子函数的概念,类的提前定义类似子函数的确定,而后续的类的引用和子函数在主函数调用相似。而python中的类和c中的子函数不同的在于,子函数更多是为了减少主函数的长度,避免主函数过长而导致的计算时间过长和主函数的计算量过大的问题;类更多的像是模块化的处理,像积木一样的存在,随时可以进行拆装重组,例如类的装饰器,这一点是远远优于c语言的,同时也能看到python语言简洁的魅力。类也有修饰器,他的逻辑类似:接收一个类,返回一个修改后的类。
2025-05-20 21:46:18
298
原创 python训练营打卡第28天
calculate_perimeter():计算周长(公式:2×(长+宽))。is_square() 方法,判断是否为正方形(长 == 宽)。calculate_circumference():计算圆的周长(公式:2πr)。shape_type="rectangle":创建长方形(参数:长、宽)。calculate_area():计算圆的面积(公式:πr²)。calculate_area():计算面积(公式:长×宽)。shape_type="circle":创建圆(参数:半径)。
2025-05-19 17:16:11
616
原创 python训练营打卡第27天
编写一个装饰器 logger,在函数执行前后打印日志信息(如函数名、参数、返回值)装饰器的思想:进一步复用。注意内部函数的返回值。
2025-05-18 15:56:26
147
原创 python训练营打卡第26天
编写一个名为 calculate_circle_area 的函数,该函数接收圆的半径 radius 作为参数,并返回圆的面积。编写一个名为 calculate_average 的函数,该函数可以接收任意数量的数字作为参数(引入可变位置参数 (*args)),并返回它们的平均值。编写一个名为 print_user_info 的函数,该函数接收一个必需的参数 user_id,以及任意数量的额外用户信息(作为关键字参数)。函数的参数类型:位置参数、默认参数、不定参数。user_id 是一个必需的位置参数。
2025-05-17 21:25:12
555
原创 python训练营打卡第25天
理解今日的内容即可,可以检查自己过去借助ai写的代码是否带有try-except机制,以后可以尝试采用这类写法增加代码健壮性。在即将进入深度学习专题学习前,我们最后差缺补漏,把一些常见且重要的知识点给他们补上,加深对代码和流程的理解。try-except-else-finally机制。debug过程中的各类报错。try-except机制。
2025-05-16 19:32:25
188
原创 python训练营打卡第23天
整理下全部逻辑的先后顺序,看看能不能制作出适合所有机器学习的通用pipeline。ColumnTransformer和Pipeline类。用的是ai跑出来的程序,但是不一定好用,请酌情分析使用。转化器和估计器的概念。
2025-05-14 15:59:25
147
原创 python训练营第21天
将高维像素数据(如1000x1000图像)降维到低维特征,用于人脸识别(如PCA)、图像压缩(如JPEG的DCT变换)。当数据特征维度极高(如文本、图像、基因数据)时,模型训练和存储的开销大幅增加,降维可减少计算复杂度。人类无法直接理解三维以上的数据,通过降维(如降到2D/3D)可将数据映射到低维空间,便于可视化分析。:将稀疏的高维词向量(如One-Hot编码)降维为稠密低维向量(如Word2Vec、GloVe)。:通过矩阵分解(如SVD)将用户-物品评分矩阵降维,挖掘潜在因子(如用户偏好、物品属性)。
2025-05-12 13:21:12
597
原创 python训练营打卡第20天
对于任何矩阵(如结构化数据可以变为:样本*特征的矩阵,图像数据天然就是矩阵),均可做等价的奇异值SVD分解,对于分解后的矩阵,可以选取保留前K个奇异值及其对应的奇异向量,重构原始矩阵,可以通过计算Frobenius 范数相对误差来衡量原始矩阵和重构矩阵的差异。SVD (或其变种如 FunkSVD, SVD++) 可以用来分解这个矩阵,发现潜在因子 (latent factors),从而预测未评分的项。数据重构:比如重构信号、重构图像(可以实现有损压缩,k 越小压缩率越高,但图像质量损失越大)
2025-05-11 20:43:31
272
原创 python训练营打卡第19天
绝对值越接近 1,表明相关性越强;在训练树模型时,算法会选择能最大程度降低样本不纯度的特征进行节点划分,通过计算每个特征在划分节点时所带来的不纯度降低量的累计值,来衡量特征的重要性,从而自动筛选出对模型预测结果影响较大的特征。Lasso筛选(L1正则化)是一种在机器学习和统计分析中常用的特征筛选方法,它通过在目标函数中添加L1范数惩罚项,使得模型在训练过程中自动将一些不重要特征的系数压缩为零,从而实现特征选择的目的,能够有效减少模型的复杂度,提高模型的泛化能力,同时还可以处理特征之间的共线性问题。
2025-05-09 20:14:36
415
原创 python训练营打卡第18天
参考示例代码对心脏病数据集采取类似操作,并且评估特征程后模型效果有无提升。推断簇含义的2个思路:先选特征和后选特征。科研逻辑闭环:通过精度判断特征工程价值。通过可视化图形借助ai定义簇的含义。聚类后的分析:推断簇的类型。
2025-05-08 16:58:04
149
原创 python训练营打卡第17天
知识点聚类的指标聚类常见算法:kmeans聚类、dbscan聚类、层次聚类三种算法对应的流程实际在论文中聚类的策略不一定是针对所有特征,可以针对其中几个可以解释的特征进行聚类,得到聚类后的类别,这样后续进行解释也更加符合逻辑。聚类的流程标准化数据选择合适的算法,根据评估指标调参( )将聚类后的特征添加到原数据中原则t-sne或者pca进行2D或3D可视化。
2025-05-07 23:00:29
246
原创 python训练营打卡第16天
numpy数组的创建:简单创建、随机创建、遍历、运算。numpy数组的索引:一维、二维、三维。SHAP值的深入理解。
2025-05-06 21:35:26
136
原创 python训练营打卡第15天
此数据集包含来自中国五个主要城市(北京、上海、广州、成都和深圳)的合成但真实的空气污染数据。它从 2015 年到 2025 年,提供有关空气质量、气象条件和污染水平的宝贵信息。该数据集由 3000 行 24 列组成,涵盖了各种空气污染物、天气状况和地理细节。尝试找到一个kaggle或者其他地方的结构化数据集,用之前的内容完成一个全新的项目,这样你也是独立完成了一个专属于自己的项目。该数据集专为数据分析、机器学习模型和空气质量预测应用程序而设计。1.有数据地址的提供数据地址,没有地址的上传网盘贴出地址即可。
2025-05-05 22:53:52
158
原创 python训练营打卡第13天
平均 precision_minority: 0.8291 (+/- 0.0182)平均 precision_minority: 0.8291 (+/- 0.0182)--- 3. 训练最终的带权重模型 (整个训练集) 并在测试集上评估 ---SMOTE 过采样后训练集的形状: (8656, 31) (8656,)--- 2. 带权重随机森林 + 交叉验证 (在训练集上进行) ---随机过采样后训练集的形状: (8656, 31) (8656,)--- 1.默认参数随机森林(训练集 -> 测试集) ---
2025-05-02 22:32:21
1501
原创 python训练营打卡第12天
的模拟研究的两位美国学者提出,两人对于鸟群中个体通过共享群体信息快速找到食物,而鸟群中个体的行为可以抽象成为算法中的“个体最优”和“群体最优”的交互规则。而对于鸟群在空间中的飞行可以转换为对连续空间搜索的问题优化方式。的思路为主,尝试检索资料、视频、文档,用尽可能简短但是清晰的语言看是否能说清楚这三种算法每种算法的实现逻辑,帮助更深入的理解。三种启发式算法的示例代码:遗传算法、粒子群算法、退火算法。:每个粒子代表解空间中的一个候选解,具有位置和速度属性。:常设为2,平衡个体与群体经验的影响。
2025-05-01 19:22:49
278
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人