Spark生态系统

从1.3.0版本开始,Spark引入了DataFrame概念,源于R语言的灵感;1.4版发布SparkR,实现了R语言与Spark的轻量级集成;1.6版则加入了Dataset接口,展示了Spark生态圈的持续创新与扩展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Spark自有生态圈(以Spark为核心)

● 1.3.0 及后续版本中,SchemaRDD 已经改名为DataFrame,DataFrame的概念来自于R语言

● 1.4才有Spark R,他是一个R语言包,它提供了轻量级的方式使得可以在R语言中使用Spark

● 1.6引入Dataset接口

更大的生态圈

 

如何对待

● 无需纠结谁替代谁(相互补充)

● 以某一个组件为突破口逐渐深入

● 大局观和生态意识

● 一切以应用场景为出发点

### Hadoop 和 Spark 生态系统概述 Hadoop 和 Spark 是当前大数据领域中最流行的两个生态系统,它们各自具有独特的功能和技术优势。 #### Hadoop 生态系统 Hadoop 主要由以下几个核心组件构成[^1]: - **HDFS (Hadoop Distributed File System)**: 提供高吞吐量的数据访问机制,适合大规模数据集的存储。 - **MapReduce**: 一种编程模型,用于并行处理大量数据。 - **YARN (Yet Another Resource Negotiator)**: 负责集群资源管理与调度。 除此之外,Hadoop 的生态系统还包括 Hive、Pig、ZooKeeper 等工具,支持更广泛的大数据分析需求。Hive 提供 SQL 查询能力,使用户可以通过熟悉的 SQL 接口分析存储在 HDFS 中的数据;Pig 则提供了一种高层次的语言 Pig Latin 来简化复杂的数据流操作[^2]。 #### Spark 生态系统 Spark 是一个快速通用的大规模数据处理引擎,相较于 Hadoop MapReduce,在内存计算方面表现更为出色。以下是 Spark 的几个重要组成部分[^3]: - **Spark Core**: 提供基本的功能框架,包括任务调度、内存管理和错误恢复等。 - **Spark SQL**: 支持结构化数据查询,兼容 HiveQL 并能高效处理关系型数据。 - **Spark Streaming**: 实现低延迟的实时数据流处理。 - **MLlib (Machine Learning Library)**: 提供丰富的机器学习算法库。 - **GraphX**: 用于图计算和图形分析的应用场景。 相比 Hadoop,Spark 更加注重性能优化和易用性提升,尤其是在迭代计算和交互式查询方面表现出色[^4]。 #### 关于 '余辉' 如果提到的技术应用或概念涉及“余辉”,这可能是特定行业内的术语或者是某种隐喻性的描述方式。“余辉”通常指事物消逝后的残留影响或者光芒延续现象。但在 IT 或者大数据技术语境下,“余辉”并未成为标准化名词。因此建议进一步明确具体背景以便获得更加精准的信息关联解释。 ```python from pyspark.sql import SparkSession spark = SparkSession.builder.appName("example").getOrCreate() dataframe = spark.read.format('csv').option('header', 'true').load('/path/to/data') dataframe.show() ``` 以上代码片段展示了如何利用 PySpark 创建会话对象读取 CSV 文件内容,并展示部分记录作为示例演示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值